Термостат своими руками на микроконтроллере

Термостат своими руками на микроконтроллере

Терморегулятор на микроконтроллере PIC16F628 с датчиком температуры DS1820

Особенность конструкции: Индикация на ЖК — дисплей текущей температуры. Возможность управления нагревательным элементом или другим мощным внешним прибором. Возможность работы в режиме термостата.

Сердцем схемы является микроконтроллер PIC16F628, поддерживающий постоянный обмен информацией с цифровым термометром DS1820 по протоколу 1-Wire, а также обрабатывает и анализирует эти данные и выводит ее на ЖК дисплей. В качестве дисплея используется модуль 16х2 MT16S2H фирмы «МЭЛТ»

Блок питания можно собрать самостоятельно на стабилизированное напряжение на 5 вольт. Чтоб узнать как запрограммировать датчик температуры DS1820 кликните мышкой на картинку выше с надписью терморегулятор схемы

Терморегулятор на микроконтроллере PIC16f84 для теплого пола с датчиком температуры DS1621

Устройство работает по интерфейсу l2C. В момент подачи питания, микроконтроллер сначала инициализирует внутренние регистры температурного датчика, а затем проводит его настройку.

Как только инициализация заканчивается, микроконтроллер считывает из энергонезависимой памяти заданные уровни температуры. Затем терморегулятор осуществляет циклический опрос температурного датчика и выводит значение температуры на светодиодный индикатор. Для отображения десятых долей температуры, десятичная точка у индикатора HG2 соединена через сопротивление R14 на общий провод. В конце сравнения заданного и фактического значений температуры программа формирует низкий или высокий уровень сигнала на второй выход RА3 микроконтроллера PIC16f84. Это сигнал и является управляющим для включения терморегулятора.

Требуемую температуру в память микроконтроллера PIC16F84A можно вносить с шагом в пол градуса Цельсия. Выбор нужного значения температуры осуществляется тумблерами SB1 и SB2, а ее запись в энергонезависимую память осуществляется нажатием и удержанием более 1 секунды кнопки SB3.

Температурный датчик DS1621 располагаем в подходящего по диаметру трубки и вблизи с нагревательным кабелем теплых полов. Соединение датчика и терморегулятора осуществляем 4-х проводным кабелем длинной до двух метров. Прошивку к микроконтроллеру скачивайте по ссылке чуть выше, а о программирование PIC микроконтроллеров читаем тут.

Непосредственное подключение терморегулятора можно сделать практически через любую выше рассмотренную схему, а можно использовать вот такой вариант:

Оптическая развязка цепей между термостатом и нагревательными элементами теплых полов выполнена на оптосимисторе MOC3041.

Величину температурного гистерезиса можно задавать в интервале от 1 до 10 градусов. Температурный максимум, поддерживаемый регулятором, около 70 градусов. При первом включении схемы в энергонезависимую память МК записывается гистерезис включения и выключения термостата — 5 градусов и поддерживаемая температура -40 градусов. После подачи питания должны загореться все сегменты цифрового индикатора кроме точек. Для задания температуры используются кнопки SB1 и SB2. SB1 — уменьшение, SB2 — увеличение. Гистерезис задается этими же кнопками, но при нажатой SB3. Функциональность кнопок SB1 и SB2 в данном случае такая же. Если задать температуру в сорок градусов, а гистерезис десять, то при сорока градусах будут срабатывать термонагреватели, а при 40+10 = 50 они отключатся.

Номиналы сопротивлений резисторов R8,R9,R10 могут лежать в интервале от 4,7кОм до 10кОм. А вот номиналы сопротивлений R5 и R6 — критичны и должны быть такими, чтобы общий ток, идущий через HL2 и оптрон U1, был не выше 25 миллиампер. Можно вообще HL2 выкинуть из схемы, достаточно и лампы HL1, и тем самым снизить нагрузку на выходе МК.

Блок питания лучше взять трансформаторный. , т.к он более устойчив к сетевым помехам, которые иногда приводят к зависанию прошивки микроконтроллера. Напряжение на входе стабилизатора DA1 должно обеспечивать необходимый уровенб для питания микроконтроллера. Прошивку, рисунок печатной платы и более качественный вариант принципиальной схемы можно забрать по ссылке выше.

Основа схемы — уже знакомый микроконтроллер PIC16F628A. В роли датчика температуры применен DS18B20, способный правильно функционировать до +125 градусов. Показания установленной и реальной температуры индицируется четырехразрядным семисегментным светодиодным индикатором с общим анодом.

Задание нужной температуры осуществляется при помощи двух кнопок SB1 и SB2. Коммутация нагрузки происходит с помощью оптотиристоров ТО125-12,5-6. При помощи сопротивления R1 задается ток протекающий через светодиоды оптронов, номиналом около 50мА. Оптотиристоры необходимо разместить на радиаторах, согнутых из полоски алюминия площадью 100см 2 . В роли сетевого трансформатора можно использовать любой, обеспечивающий на выходе вторички напряжение 6В при токе нагрузки — от 100 мА. Прошивку к МК и чертеж печатной платы забираем по ссылке выше

Основой схемы является, уже знакомый нам микроконтроллер PIC16F628A. Применение ЖК дисплея позволило освободить несколько выводов МК, что существенно упростило согласование по времени считывания данных с датчика температуры и влажности и вывода результирующей информации на экран. В этой схеме используется универсальный датчик температуры и влажности DHT22.

Кроме того, конструкция состоит из девяти резисторов, оного конденсатора и пяти управляющих кнопок.

Максимальная температура, которую можно задать в термостате, 42 градуса. Минимальная — 25,7. Интервал изменения петли гистерезиса составляет от 0,1 до 0,9 градуса Цельсия. Влажность можно регулировать в диапазоне от 0,1% до 99,9%. При первом включении МК, в его энергонезависимую память будут сохранены следующие величины: температура — 37,5°C, гистерезис — 0,5°С, влажность — 50%. Далее, в память, будут внесены уже необходимые вам параметры. Скачать прошивку и более качественный вариант схемы можно по ссылке выше.

Источник: www.texnic.ru

Термостат своими руками на микроконтроллере

Терморегулятор на термопаре К-типа

Автор: DrCaH4ec, drcah4ec@meta.ua
Опубликовано 20.07.2017
Создано при помощи КотоРед.

Всем доброго времени суток!

Представляю вашему вниманию разработанную мной схему терморегулятора на термопаре К-типа.

«Мозгом» данного устройства является микроконтроллер Atmega8 (я использовал корпус TQFP32). Данные выводятся на семисегментный трехразрядный индикатор с общим катодом(цвет свечения на ваш вкус). Ток на катоды индикатора идет через транзисторы(я использовал MMBT3904, но так же подойдут КТ315 или любые другие маломощные биполярные транзисторы обратной проводимости).

Прибор питается от напряжения 5В которое обеспечивает стабилизатор напряжения 7805, нужно взять в корпусе ТО220 и рекомендуется установить на радиатор.

Диоды для диодного моста я взял 1N4007, но также можно использовать любые другие выпрямительные диоды или же готовый диодный мост. Управление осуществляется кнопками S1(Т-), S2(Т+). Сигнал с термопары усиляется операционным усилителем LM358. В устройстве реализована компенсация холодного спая термопары и калибровка 0 операционного усилителя. Термопару можно использовать от мультиметра, но лучше взять ее в защитном кожухе так как ее спокойно можно будет погружать в те вещества, которые вы будете плавить.

Резисторы любой мощности.

«Экзотические» номиналы резисторов в блоке усиления можно получить следующим образом:

Диод D5 обязательно должен быть прикреплен как можно ближе к месту крепления контактов термопары к плате и он должен быть 1N4148 или отечественный аналог КД522.

Управление нагрузкой осуществляется симистором. Гальваническая развязка обеспечена за счет использования оптопары. Симистор обязательно нужно установить на радиатор. Если у вас отсутствует воздушное охлаждение, он должен быть достаточно большим, при наличии принудительного охлаждения хватит даже радиатора из компьютерного блока питания.

Максимальная нагрузка которую можно подключать к устройству ограничивается только симистором, который вы поставите. Силовые провода желательно использовать потолще ввиду того, что по ним будет идти большой ток.

Светодиод LED1 индицирует идет ли нагрев.

Минимальная температура которую можно установить – 50 о С; максимальная – 800 о С.

Принцип работы устройства очень простой. Если текущее значение температуры нагревателя измеренное прибором меньше установленного, то на порте B2 микроконтроллера появляется логическая единица, симистор открывается и ток на ТЭН проходит. Иначе, если текущее значение температуры нагревателя измеренное прибором больше или равно установленному, то на порте B2 микроконтроллера появляется логический ноль, симистор закрывается и ток на ТЭН не проходит.

Правильно собранное устройство нуждается только в калибровке.

Корпус было решено использовать от компьютерного блока питания.

Один из сетевых проводов и выход симистора выведены сзади корпуса наружу и через мощный клемник к ним подключается ТЭН. Также на задней части корпуса выходят провода термопары. Так как провода термопары в моем случае экранированные, на экране находится минус.

Спереди для улучшения внешнего вида изготовил фальш-панель из куска ПВХ и оракала. Также здесь размещены индикатор, кнопки управления, светодиод индицирующий нагрев и выключатель устройства, который отключает только питание от платы и к силовой части отношения не имеет.

Калибровка

Включите устройство. Опустите термопару в талую воду со льдом и вращая переменный резистор P1 установите на индикаторе 0 о С, или же если у вас есть градусник, можете измерить им комнатную температуру и вращая переменный резистор Р1 установите на индикаторе такую же температуру, какую показал «эталонный» градусник. Затем закипятите воду, опустите термопару туда и вращая переменный резистор Р2 установите на индикаторе 100 о С. Можете произвести такую операцию несколько раз, пока прибор не покажет нужную температуру без подстройки. Можете так же поверить как он покажет температуру тела.

Использование

Сразу после включения на индикаторе появится надпись приветствия НІ(с англ. – привет).

Затем устройство покажет установленную температуру (при первом включении там будет случайное число) и терморегулятор перейдет в рабочий режим. Где будет показывать текущую температуру, также светодиод будет индицировать идет ли нагрев (светодиод светит – идет, не светит – не идет).

Для установки заданной температуры нагрева нужно зажать обе кнопки и держать до появления надписи «INS» (instalation).

Затем на индикаторе ненадолго появится значение текущей установленной температуры и вы сможете кнопками установить нужную вам температуру. Когда вы это сделали, просто отпустите кнопки и ничего не делайте. Через некоторое время (примерно 5 сек.) на индикаторе появится надпись «SAV»(save). И устройство перейдет в рабочий режим.

Что ж надеюсь, все вышесказанное было для вас полезным и это устройство у вас заработает сразу. Всего вам хорошего и удачи в работе.

Источник: www.radiokot.ru

Простой термостат – термометр с энкодером на микроконтроллере PIC16F628. Схема

В зимние месяцы, когда требуется обогрев помещений, особое значение приобретает контроль температуры. Для этой цели используются различные методы. Одним из них является электронный метод, основанный на использовании термостата. Это решение позволяет контролировать температуру и, в зависимости от условий, управлять нагревательными устройствами.

Термостат — это устройство, которое, как следует из его названия, поддерживает температуру на заданном уровне. При этом недостаточно задать только значение необходимой температуры, для правильной работы необходимо указать минимальную и максимальную температуру.

Контроллер термостата будет включать и выключать нагреватель в зависимости от того, находится ли фактическая температура в заданном диапазоне.

В данной статье термостат снабжен буквенно-цифровым дисплеем 16х1, информирующий о текущей и заданной температуре. Благодаря этому, помимо функции регулировки, устройство также играет роль электронного термометра.

Температура измеряется с использованием цифрового датчика DS18B20, работающего в диапазоне -55…+125°C. Однако отображаемый диапазон ограничен диапазоном от -55…+99,9°C, и в таком же диапазоне можно установить контролируемую термостатом температуру. Этот диапазон значительно превышает потребности пользователя, однако из-за функции термометра это может быть полезно.

Установленная температура поддерживается с точностью определяемой гистерезисом включения и выключения реле. Его величина влияет на частоту переключения реле.

Например, если предположить, что температура должна быть на уровне 25°С с точностью 0,1°С, то при снижении температуры на 0,1°С произойдет включение обогревателя, а при увеличение на 0,1°С отключение.

Поддержание температуры с максимальной точностью весьма желательно, однако слишком малая разница в температуре между включением и выключением реле вызовет частое его переключение.

Чтобы уменьшить частоту переключений необходимо увеличить гистерезис. Чем больше гистерезис, тем ниже точность поддерживаемой температуры.

Увеличив гистерезис в приведенном выше примере до 0,5°C, при поддержании температуры на уровне 25°C, переключение реле не будет происходить при температуре в диапазоне 24,5…25,5°C.

Значение гистерезиса необходимо подбирать в соответствии с поставленной задачей. В данном устройстве гистерезис может быть отрегулирован в диапазоне 0…5°C.

Для управления термостатом используется энкодер. Это решение позволяет легко и быстро изменять параметры. Это гораздо более дружелюбный способ, чем использование кнопок. Параметры сохраняются в энергонезависимой памяти, поэтому вам нет необходимости устанавливать их снова после сбоя питания.

Коммутационная схема — это реле с управляемой мощностью 16А. Это дает возможность управлять нагревателем мощностью до 3 кВт. Для обеспечения безопасности, коммутационная схема выполнена на отдельной плате. Благодаря этому панель управления термостатом может быть размещена в любом удобном месте.

Управляющим элементом термостата является микроконтроллер PIC16F628 от «Microchip», который работает от внешнего кварцевого резонатора с частотой 4 МГц. Для отображения установленной и измеренной температуры применен однострочный буквенно-цифровой дисплей с возможностью отображения 16 символов. Контраст дисплея настраивается потенциометром R5.

Параметры термостата выставляются с помощью энкодера (Sw1) со встроенной кнопкой. Сигналы данных подаются на порт RA, а от кнопки — на порт RB.

Как уже было сказано выше, в качестве датчика температуры используется микросхема DS18B20, которая измеряет температуру и передает информацию в 12-битном формате. Микроконтроллер считывает результат через интерфейс 1-Wire и после вычислений выводит на дисплей температуру с разрешением 0,1°C.

Сигнал, управляющий реле, через транзисторный ключ VT1 подается на реле.

Питание термометра осуществляется с помощью стабилизатора напряжения DA1 (78l05), который обеспечивает выходное напряжение 5 В. Конденсаторы С1…С4 сглаживаю входное и выходное напряжение. Диод VD1 (1N4007) защищает схему от переплюсовки входного источника питания.

Термостат собран на двух платах: одна для системы управления с микроконтроллером и дисплеем, вторая для коммутации.

Для питания схемы термостата необходим источник питания с выходным напряжением около 12 В и током не менее 100 мА. После включения на дисплее будет отображаться фактическая температура и значение температуры, которое поддерживается термостатом.

В термостате можно запрограммировать два параметра: желаемую температуру и точность (гистерезис). Эти параметры сохраняются в энергонезависимой памяти EEPROM.

Изменение контролируемой температуры осуществляется поворотом ручки энкодера. После первого поворота отображаемое значение начнет мигать, и теперь термостат будет работать с новым значением.

Однако мигающее значение температуры указывает на то, что изменения сделаны временно. В этом режиме термостат может работать и поддерживать новую температуру, но только до тех пор, пока питание не отключится.

Чтобы отменить изменения и вернуться к значению, хранящемуся в энергонезависимой памяти, кратко нажмите кнопку энкодера. Установленное значение перестает мигать. Когда питание снова будет включено, будет использовано значение из EEPROM. Для того чтобы записать в память новую температуру необходимо нажать и удерживая кнопку энкодера в течение примерно двух секунд.

Второй параметр — гистерезис. Чтобы войти в режим изменения гистерезиса, нажмите кнопку энкодера во время нормальной работы термостата. На дисплее отобразится текущее значение в формате Term = T ± 0,0°C (значение по умолчанию 0,0°C). Изменения делаются поворотом ручки энкодера. Как и при настройке температуры, после первого шага начинает мигать измененное значение. Чтобы отказаться от введенных изменений, кратко нажмите клавишу. Чтобы сохранить его нажмите кнопку примерно на две секунды.

Статус активации реле отображается индикацией точки между фактической и контролируемой температурой.

Скачать рисунок печатной платы и прошивку (78,3 Kb, скачано: 540)

Источник: www.joyta.ru

Термостат на PIC контроллере

Задумка
Появилось у меня помещение для станка. Там должна быть температура определённого уровня, при влаге и холоде на улице. Электрокамин и печи не по мне, много дров, топлива и большое энергопотребление, при не так уж и большой производительности тепла на выходе. Присмотрел и приобрёл тепловентилятор, промышленного образца, с минимумом пластиковых, горючих материалов:

Характеристики:
– Номинальное напряжение, частота сети, В/Гц __220 / 50;
– Потребляемая мощность, кВт ____ 1 / 2 кВт;
– Отдача тепла, м3/час _____200;

Управление
Тепловентилятор есть, теперь необходимо сделать умную систему управления и контроля. Поискав в интернете нашлась схема из журнала Р-К №11/2008г., – «Цифровой термостат». Конструкция оказалась простой, как по мне, с двухстрочным цифровым экранчиком. Ниже приведена схема, нарисованная в программе SPlan 7.0.

По характеристикам термостат способен задавать температуру от -25 до +75°С, при шаге 0,25°С. Так же можно задать в предустановках меню спад и нарастание температуры шагом по 0,1°С.

Работа с термостатом осуществляется с помощью кнопок. Кнопками «+» и «-» (S1 и S2) определяется значения температуры или спада (нарастания), кнопка «MODE» (S3) – режим установки.

Для того чтобы задать температуру поддержания, нажимаем кнопку S3 и удерживаем её пока на экране не засветится «SET TEMPERATURE».

Управление схемой происходит микроконтроллером PIC16F628. Тактовая частота организована кварцом ZQ1 с частотой резонанса – 4МГц.

Управление тепловентилятором происходит с симистором VS1 – BT136. Управление симистором осуществляется при помощи оптопары MOC3043. Силовую схему управления тепловентилятора я дополнил промежуточным реле. Катушка реле стала играть роль нагрузки симистора, а её контакты запараллелил и скомутировал в цепь питания тепловентилятора.

Схема оперативного питания выполнена на малогабаритном герметичном трансформаторе, у него сдвоенная вторичная обмотка, 9V-0-9V, на номинальный ток 100mA. Выпрямитель исполнен на на двух диодах VD1и VD2. Если трансформатор с одной понижающей обмоткой необходимо применить схему моста. Контроллер и дисплей запитан от +5V через стабилизатор напряжения А2 (7805).

Для отключения подсветки пин 16 экрана можно отключить, или как я поставил выключатель.
Печатная плата термостата, чисто моя разработка.

В файле термостат.lay есть несколько страниц.

Третья задача – корпус. Выбрал Z20. Ниже приведена технология подгонки корпуса и изготовления отверстий при помощи шаблонов.

Источник: usamodelkina.ru

СХЕМА ТЕРМОРЕГУЛЯТОРА

Поводом для сборки этой схемы послужила поломка терморегулятора в электрическом духовом шкафу на кухне. Поискав в интернете, особого изобилия вариантов на микроконтроллерах не нашел, конечно есть кое-что, но все в основном рассчитаны на работу с термодатчиком типа DS18B20, а он очень ограничен в температурном диапазоне верхних значений и для духовки не подходит. Задача ставилась измерять температуры до 300°C, поэтому выбор пал на термопары К-типа. Анализ схемных решений привел к паре вариантов.

Схема терморегулятора — первый вариант

Термостат собраный по этой схеме имеет заявленный предел верхней границы 999°C. Вот что получилось после его сборки:

Испытания показали, что сам по себе термостат работает достаточно надежно, но не понравилось в данном варианте отсутствие гибкой памяти. Пошивка микроконтроллера для обеих вариантов — в архиве.

Схема терморегулятора — второй вариант

Немного поразмыслив пришел к выводу, что возможно сюда присоединить тот же контроллер, что и на паяльной станции, но с небольшой доработкой. В процессе эксплуатации паяльной станции были выявлены незначительные неудобства: необходимость перевода таймеров в 0, и иногда проскакивает помеха которая переводит станцию в режим SLEEP. Учитывая то, что женщинам ни к чему запоминать алгоритм перевода таймера в режим 0 или 1 была повторена схема той же станции, но только канал фен. А небольшие доработки привели к устойчивой и «помехонекапризной» работе терморегулятора в части управления. При прошивке AtMega8 следует обратить внимание на новые фьюзы. На следующем фото показана термопара К-типа, которую удобно монтировать в духовке.

Работа регулятора температуры на макетной плате понравилась — приступил к окончательной сборке на печатной плате.

Закончил сборку, работа тоже стабильная, показания в сравнении с лабораторным градусником отличаются порядка на 1,5°C, что в принципе отлично. На печатной плате при настройке стоит выводной резистор, пока что не нашел в наличии SMD такого номинала.

Светодиод моделирует ТЭНы духовки. Единственное замечание: необходимость создания надежной общей земли, что в свою очередь сказывается на конечный результат измерений. В схеме необходим именно многооборотный подстроечный резистор, а во-вторых обратите внимание на R16, его возможно тоже необходимо будет подобрать, в моём случае стоит номинал 18 кОм. Итак, вот что имеем:

В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543 — это означает датчик отключен или обрыв.

И наконец переходим от экспериментов до готовой конструкции терморегулятора. Внедрил схему в электроплиту и пригласил авторитетную комиссию принимать работу 🙂 Единственное что жена забраковала — маленькие кнопки на управлении конвекцией, общее питание и обдув, но это решаемо со временем, а пока выглядит вот так.

Регулятор заданную температуру держит с точностью до 2-х градусов. Происходит это в момент нагрева, из-за инертности всей конструкции (ТЭНы остывают, внутренний каркас выравнивается температурно), в общем в работе схема мне очень понравилась, а потому рекомендуется для самостоятельного повторения. Автор — ГУБЕРНАТОР.

Источник: radioskot.ru

Читать еще:  Электроды для контактной сварки своими руками
Ссылка на основную публикацию
Adblock
detector