Регулятор температуры для инкубатора своими руками

Регулятор температуры для инкубатора своими руками

Приведенная ниже схема является развитием темы симисторного регулятора мощности. В данном случае добавляются термочувствительный и нагревательный элементы благодаря которым и поддерживается требуемая температура. Включая-отключая нагрузку, которой служит электронагреватель, терморегулятор регулирует температуру микросреды инкубатора, аквариума или другого замкнутого пространства.

Схема терморегулятора

Принцип работы терморегулятора

Итак, рассмотрим как работает схема терморегулятора для инкубатора своими руками: основой данного устройства является операционный усилитель DA1, работающий в режиме компаратора напряжений. На один вход подается изменяющееся напряжение с терморезистора R2, а на второй, задаваемое переменным резистором R5 и подстроечным R4. Для точной и грубой регулировки. В зависимости от области применения, подстроечный резистор можно и исключить.
При равенстве входных напряжений транзистор VT1, управляемый выходом компаратор – закрыт, на управляющем электроде VS1 ноль, а значит закрыт и симистор. При изменении температуры меняется сопротивление R2, а на разницу напряжений на входах компаратор отреагирует подачей открывающего сигнала на VT1. Появившееся на R8 напряжение откроет тиристор, пустив через нагрузку ток. Когда напряжения на входах операционного усилителя выравняются, он отключит нагрузку.
Питание управляющего каскада осуществляется через выпрямительный диод VD2 и гасящее сопротивление R10. При его сверхмалом потреблении тока – это вполне допустимо, как и использование для стабилизации питающего напряжения всего одного стабилитрона VD1. К тому же, управляющие цепи запитываются через нагрузку, на которой тоже происходит падение напряжения, особенно в нагретом состоянии.

Замены деталей

Обратите внимание на мощность резистора R10 — 2Вт, так же этот резистор должен выдерживать мгновенное напряжение 400В, если такой резистор не удается найти, его можно заменить несколькими последовательно включенными резисторами на меньшую мощность и напряжение.
В качестве стабилитрона VD1 можно установить BZX30C12 или любой другой стабилитрон на 12В близкий по параметрам.
Вместо VD2 можно поставить диод с обратным напряжением не менее 400В и током не менее 0,3А: например из серии 1N4004 — 1N4007
На место DA1 можно установить практически любой операционный усилитель, главное чтобы он работал в диапазоне питающих напряжений 10..15В.

А вот однопереходный транзистор КТ117 (VT1) не такой общераспространенный компонент электронных схем (зарубежные однопереходные транзисторы: 2N6027, 2N6028), зато его можно заменить схемой из двух биполярных транзисторов разной структуры и одного резистора 47 кОм. В схеме используются распространенные КТ315 и КТ361, но вполне могут использоваться и другие маломощные комплиментарные биполярные транзисторы.

Области применения терморегулятора

В основном, данное устройство применялось для термостабилизации птичьих инкубаторов. Где в роли тэнов выступали маломощные электрические лампочки по 60 Вт, соединенные параллельно по 4, 6 и 8 штук, в зависимости от размеров инкубатора и количества инкубируемых яиц.

Как монтировать обогреватель для инкубатора

  • лампы должны быть равномерно расположены над поверхностью яиц, на расстоянии 25-30 см от их поверхности;
  • терморезистор должен находиться как можно ближе к поверхности яиц, но не касаться их;
  • использовать вместо лампочек можно и другие нагреватели, но с малой теплоемкостью, к примеру, вольфрамовую проволоку, натянутую на керамическую рамку в форме тетраэдра.

Обогреватель для аквариума

Реже, такой терморегулятор применялся для поддержания заданной температуры в аквариумах с тропическими рыбками. Такая необходимость возникала из-за того, что большинство, выпускаемых для этих целей термообогревателей, имеет механический терморегулятор объединенный с тэном в одном корпусе. А следовательно, они поддерживают в заданных пределах свою, а не окружающую температуру. Это хорошо работает только в помещениях со стабильной, в пределах одного-двух градусов, своей температурой воздуха.

Особенности монтажа

  • из-за инертности воды, датчик и обогреватель должны быть разнесены, но в пределах прямой видимости (без перекрытия растениями и элементами декора) друг от друга;
  • из-за электропроводимости воды, датчик должен быть изолирован, либо средствами с хорошей теплопроводностью, либо тонким слоем обычного герметика;
  • допускается использование как обычных аквариумных обогревателей, так и регулируемых, с выставленной на максимум температурой.

Можно найти и другие сферы применения данному, несложному в изготовлении устройству. К примеру для рассадных парничков, сушильных шкафов, различных термованночек. На что вашей фантазии хватит. Только, если нагрузка допускает возможность короткого замыкания, необходимо добавить плавкий предохранитель на 1 А.

P.S.
Как говорилось выше данный простой терморегулятор применялся в инкубаторах раньше, сейчас на его смену пришли терморегуляторы с микроконтроллерным управлением, способные в автоматическом режиме понижать температуру в течении цикла инкубации. Да и сами инкубаторы обзавелись функцией регулирования влажности и переворачивания яиц.

12 thoughts on “ Схема терморегулятора для инкубатора своими руками ”

За микроконтроллерами будущее, не спорю, спасибо Гарвардской архитектуре вообще и Микрочип Технолоджи в частности. Но везде ли рентабельно их применение, с их-то возможностями. Сами-то они не дороги, но необходимая им периферия может быть разной. Да и без знания программирования на низком, машинном уровне — браться за них не стоит. Одним словом — чип для профессионалов и профессионального использования.
Но осваивать цифровые технологии необходимо и любителям, конечно, куда сейчас без них.

Видел инкубатор со схемой которая намного проще, где используется маломощный закрытый нагреватель и тепловое реле-регулятор. Конечно эта схема хорошая, но для любителя сложновата, ведь её надо ещё настроить.

Эту схему настраивать не нужно, заработать должна сразу. Вот подстраивать температуру нужно будет.
Если брать готовый регулятор, то и паять ничего не нужно: просто прикрутить провода к клеммам и готово. Кстати терморегулятор с цифровым индикатором, микропроцессором и датчиком температуры на алиэкспрессе можно купить что-то около 2 долларов. Долларов за 10-15 можно взять терморегулятор для теплого пола с графиком изменения температуры в течении суток и по дням недели.

Если для простенького инкубатора, то можно и за 2$, а лучше за 3-4, с задачей температурного люфта, чтоб лампочки не «дребежжали» из-за чувствительности датчика. Для хорошего, хорошо брать с полным графиком (и памятью на несколько) за 15-20$, чтоб задать полный цикл на весь период инкубации (для разных птиц), а к тенам подключить тихоходный (или редукцированный ) движок переворотки.
Но, по-настоящему хорошо — изучать pic-процессоры и создавать на их базе свои устройства, любой функциональности. А на алиэкспрессе можно купить программатор.

Микроконтроллеры штука хорошая, но когда речь идет о живых душах, лучше проще но надежнее на мой взгляд. Дабы яйца не заморозить или рыбок аквариумных не сварить.
Потому как бывает, что прошивку вылизываешь до блеска, мплаб и протеус аж дымятся от симуляции, и макет казалось бы работает. А вот складываются вдруг однажды некие условия, в которых программа заходит в тупик и устройство на МК впадает в маразм. И что характерно, прямо на ровном месте, там где казалось бы ничего не должно случится. Однако же не досмотрел какой-то из возможных вариантов, и пожалуйста — глюк. Терморегулятор с компаратором уж точно не заглючит при исправных деталях.

А можно ли использовать подобный(близкий к этому)принцип для создания токового реле нагрузки,но с 12 вольтовым питанием устройства

Да, даже проще получиться не нужен будет стабилитрон и мощный резистор, однопереходной транзистор, а вместо симмистора — MOSFET (если нагрузка небольшая то можно и биполярным транзистором обойтись).

Читать еще:  Как сделать самодельный колун

Компаратор без гистерезиса и достаточно мощный нагреватель не дадут неожиданных эффектов для приборов работающих по соседству? Я делал похожий для обогрева кожуха уличной аналоговой камеры. Но нагреватель был сделан из резисторов МЛТ и в качестве ключа мощный биполярный резистор (питание нагревателя 15 вольт). В ходе переключения компаратора «дребезг» был такой, что несколько секунд невозможно было ничего разобрать на видеозаписи с камеры. А в морозную погоду эти дребезги каждые несколько минут возникали. Помехи от многочисленных переключений на пороге срабатывания компаратора. Пришлось камеру снимать, допаивать навесом на плату резистор между выходом и неинвертирующим входом для обеспечения гистерезиса. Инкубатор и аквариум, конечно, не камера, но мало ли чего с ними в одну розетку будет подключено…

Естественно, дребезг переключений — основной недостаток данного устройства. И чем выше чувствительность и безинерционность термодатчика — тем он более ощутим. Об этом стоит помнить и, если это создает неудобство, то устранять, хотяя бы приведенным Root методом.
В закрытых, теплоизолированных от внешних условий системах с «тугими» термодатчиками, данная проблема особых неудобств не представляет.
Не стоит забывать и о том, что в те давние времена особочуствительной электроники практически не было.

Привет всем! кто может под заказ сделать плату для инкубатора?

Непонятно — а зачем в схеме симистор? Ведь управление идёт только во время одной полуволны?
КУ?

Резонно, в данной схеме можно обойтись тиристором, например КУ202Н.

Источник: hardelectronics.ru

Терморегулятор для инкубатора своими руками: описание схемы простейшей конструкции

Даже самый начинающий птицевод хорошо понимает: для получения наибольшей прибыли птенцов нужно выводить на собственном птичнике.

При наличии финансов процесс этот затруднений не вызывает, ведь сегодня в специализированных магазинах без труда можно приобрести самое разнообразное оборудование для инкубаторов. Но что делать, если бюджет еще неокрепшей птицефермы пока сильно ограничен?

Из подобных ситуаций всегда выходят одним способом: изготавливают все необходимое самостоятельно из подручных материалов. Система включает только один сложный компонент: устройство для поддержания температуры на заданном уровне. О том, как его сделать, мы и поговорим в статье, тема которой – терморегулятор для инкубатора своими руками.

Принцип работы

Основными его элементами являются нагреватель, в качестве которого используется инфракрасный излучатель или группа ламп накаливания, и температурный сенсор.

По сигналу сенсора термостат подает питание на нагреватель либо отключает его, благодаря чему температура в инкубаторе поддерживается в требуемом диапазоне.

Следует учесть, что значения комфортных температур для каждого вида птицы несколько разнятся. Чтобы инкубатор получился универсальным, нужно предусмотреть возможность настройки желаемой температуры.

Также нельзя забывать о том, что система электроснабжения является наиболее уязвимой частью загородной инфраструктуры. Лед, шквальный ветер и падающие деревья могут оборвать провода и обесточить вашу птицеферму, испортив тем самым все дело.

Чтобы иметь возможность благополучно пережить аварию, необходимо оборудовать терморегулятор аккумулятором, на который он будет автоматически переключаться при отключении основного электроснабжения.

После возобновления работы электросети прибор должен снова зарядить подсевший аккумулятор – также автоматически.

Терморегулятор или термостат – удобное устройство, которое широко применяется в быту, например, для автоматической регуляции обогрева подвала обогревателем. Как сделать терморегулятор своими руками и какие детали для этого понадобятся, смотрите в статье.

Об особенностях выбора стабилизатора напряжения для газового котла читайте далее. Типы стабилизаторов и технические характеристики.

Думаете, какой обогреватель лучше выбрать – масляный или конвекторный? Эта информация https://microklimat.pro/otopitelnoe-oborudovanie/obogrevateli/chto-luchshe-konvektor-ili-maslyanyj-obogrevatel.html поможет вам определиться с выбором.

Терморегулятор для инкубатора своими руками – схема

Термостат можно собрать, так сказать, с нуля, используя для этого различные радиотехнические детали.

Наибольшее признание у радиолюбителей получила схема на основе специального элемента, именуемого компаратором.

Компаратор имеет две пары входных контактов и одну выходную. Одна из входных пар называется прямой (помечается знаком «+»), вторая – инверсной (знак «-»).

Функция компаратора заключается в сравнении уровня напряжения на входных контактах. Если напряжение на инверсном входе больше, чем на прямом, – на выходной паре микросхемы устанавливается высокий уровень.

При этом включается подключенное к ней реле, замыкая цепь нагревателя. Если для включения реле требуется больший ток, чем имеется в цепи терморегулятора, компаратор включает его через транзистор.

Как же формируются напряжения на входных контактах компаратора? Одно из них определяется пользователем, для чего в цепь терморегулятора включается переменный резистор. Меняя сопротивление резистора, пользователь фактически задает желаемую температуру.

Напряжение на втором входе зависит от состояния температурного сенсора. В этом качестве применяются различные элементы, характеристики которых меняются с изменением температуры. Например, термистор – резистор, сопротивление которого увеличивается при нагреве и падает при охлаждении (может быть и наоборот – зависит от типа элемента).

Силовая часть терморегулятора, то есть нагреватель, запитана от обычной электросети с напряжением в 220 В. На цепь управления следует подать постоянное напряжение в пределах 12 В, для чего применяется понижающий трансформатор с диодным мостом (выпрямитель) и стабилизатором.

Данную схему мы, как уже говорилось, дополним аккумулятором. В его цепь включим реле, контакты которого при наличии напряжения в централизованной электросети будут разомкнуты. При этом обогрев инкубатора будет осуществляться лампами на 220 В или таким же инфракрасным обогревателем.

При отключении основного электричества контакты реле в цепи аккумулятора замкнутся и электропитание будет поступать от него. При этом в качестве обогревателей будут использоваться автомобильные лампы.

Как только в основной электросети снова появится напряжение, реле разомкнет цепь аккумулятора, но второй парой контактов подключит зарядное устройство, которое восстановит заряд батареи до первоначального уровня.

Описание конструкции

Модуль управления терморегулятора должен быть помещен в какой-нибудь корпус.

Наилучшим образом для этого подходит старый, отслуживший свое электросчетчик.

Здесь найдется и плата, на которой можно разместить радиодетали, и катушка для изготовления понижающего трансформатора.

Кроме того, в электросчетчике имеется клеммник с розеткой, в который очень удобно включать провод от нагревателя.

Термодатчик помещают в стеклянную или термоусадочную трубку (предотвращает механические повреждения) и кладут прямо на лотки с яйцами.

Если в качестве обогревателя предполагается использовать лампы накаливания, то патроны для них лучше закрепить на алюминиевой пластине. Предварительно в ней придется просверлить несколько отверстий соответствующего диаметра.

Обычно нагреватель устанавливается под лотком с яйцами, при этом автомобильные лампы и обычные 220-вольтовые располагают вперемешку.

Если навыков радиолюбителя у вас нет, можно собрать примитивный терморегулятор, используя термостат от какого-нибудь ненужного или поломанного электроприбора. Лучшим «донором» является старый утюг. Извлеченный из него термостат промывают, заполняют эфиром и герметично запаивают. Эфир активно испаряется, поэтому работу с ним затягивать не следует.

Это вещество выбрано потому, что оно хорошо реагирует на колебания температуры изменением объема. Остается припаять к термостату регулируемый винт или пластину, которые при определенной температуре будут замыкать контакты в цепи нагревателя.

Обогреватель в качестве вспомогательного прибора для отопления часто используют и в частных домах, и в квартирах. Масляные радиаторы отопления электрические очень популярны среди потребителей благодаря их эффективности.

Нужно ли покупать ИБП для котла отопления? Попробуем разобраться далее.

Читать еще:  Как сделать термодатчик своими руками

Детали устройства

Выше было предложено использовать в качестве температурного сенсора термистор, но это не единственный вариант.

В принципе, в этом качестве может быть задействован любой полупроводниковый элемент, так как характеристики этих деталей всегда зависят от температуры.

Так, например, ток коллектора обычного биполярного транзистора при нагреве возрастает, что неминуемо отражается на работе усилительного каскада (транзистор перестает реагировать на входной сигнал из-за смещения рабочей точки).

Похожим образом реагируют на изменение температуры и кремниевые диоды. При температуре +25 градусов напряжение на контактах свободного диода составит около 700 мВ, а замеры на перманентном диоде покажут примерно 300 мВ. Если же температура будет повышаться, напряжение с каждым градусом будет падать примерно на 2 мВ.

Однако, у всех этих элементов есть существенный недостаток: собранные на их базе терморегуляторы с большим трудом приходится настраивать, иначе говоря, калибровать. Ведь нам только приблизительно известно, какую элемент демонстрирует характеристику при той или иной температуре и как именно он реагирует на ее колебания. Гораздо проще работать с выпускаемыми современной промышленностью термодатчиками, проходящими калибровку еще на стадии производственного процесса.

Сильного удорожания проекта покупка такой детали не вызовет. Так, например, аналоговый термодатчик марки LM-335 компании National Semiconductor стоит всего 1 доллар.

Можно использовать и его модификации – датчики LM-135 и LM-235, хотя они предназначены для применения, соответственно, в военной электронике и промышленности.

Датчик LM-335 содержит 16 транзисторов и работает подобно стабилитрону, у которого напряжение стабилизации находится в зависимости от температуры.

Только в данном случае все параметры досконально известны: на каждый градус по шкале абсолютных температур (Кельвина) приходится напряжение в 10 мВ или 0,01 В.

Таким образом, если мы хотим знать, каким будет напряжение стабилизации LM-335 при температуре 20 градусов Цельсия, нужно прибавить к этому значению 273 (перевод в градусы Кельвина), а затем результат умножить на 0,01 В. В данном случае получим 2,93 В. На производстве датчик калибруется по температуре 25 градусов Цельсия. Рабочий диапазон температур, в пределах которого напряжение меняется линейно и по указанному закону (10 мВ/градус) лежит в пределах от -40 до +100 градусов Цельсия.

Итак, зная точное напряжение стабилизации LM-335 при той или иной температуре, нам остается выставить соответствующее напряжение на втором входе компаратора – и настройка терморегулятора будет завершена.

  1. Схему на базе термодатчика LM-335 следует компоновать таким образом, чтобы через него протекал ток величиной от 0,45 до 5 мА. Отметим, что напряжение питания терморегулятора не обязательно должно составлять 12 В. Это значение было предложено только потому, что оно позволяет применить вместо самодельного блока питания (понижающий трансформатор + выпрямитель + стабилизатор) обычный адаптер, который можно недорого купить в магазине. Если же все делать самостоятельно, то понижающий трансформатор можно собрать в расчете на выходное напряжение в пределах 3 – 15 В. Главное, чтобы на такое же напряжение было рассчитано используемое в схеме реле.
  2. Далее подбирают сопротивление резисторов делителя напряжения и переменного резистора таким образом, чтобы при имеющемся напряжении сила протекающего через термодатчик тока находилась в указанных пределах. В принципе, датчик останется работоспособным и при силе тока свыше 5 мА, но тогда он будет сильно греться, из-за чего терморегулятор будет работать некорректно.
  3. В качестве компаратора можно применить микросхему того же производителя, выпускаемую под маркой LM-311 (модификации для «военки» и промышленности – соответственно, LM-111 и LM-211).

Используемое в схеме реле является многоконтактным (типа МКУ). В упрощенном исполнении (без аккумулятора) можно воспользоваться автомобильным реле. Важно удостовериться, что допустимая для данного реле величина силы тока соответствует мощности нагревателя.

Сборка и налаживание

При использовании термодатчика LM-335 или аналогичного ему (калиброванного) в настройке прибора, как уже отмечалось, нет необходимости.

Если же в качестве температурного сенсора применен термистор или какой-либо полупроводниковый элемент, то без наладки не обойтись. Удобнее всего осуществлять ее при помощи цифрового термометра, например, марки ТМ-902С.

Сенсоры термометра и терморегулятора нужно соединить при помощи скотча или изоленты и помещать в среды с различной температурой. При этом каждый раз нужно постепенно менять сопротивление переменного резистора, пока устройство не сработает. В этот миг нужно зафиксировать показания цифрового термометра и сделать напротив текущего положения ручки переменного резистора соответствующую пометку.

Видео на тему

Источник: microklimat.pro

Терморегулятор для инкубатора своими руками — схема

Регулятор температуры внутри автоматического инкубатора для яиц, независимо от того, как прибор изготовлен, самостоятельно или заводского производства, относится к одному из самых важных элементов этого изделия.

Природой предусмотрено, что для выведения молодняка птицы разных пород, нужны подходящие условия. Например, температура выведения гусиных яиц в инкубаторе, отличается от параметров выведения уток. Куриные яйца инкубируют при температуре 37,7°, гусиным нужна 38,8°.

Строить инкубаторы отдельно для каждой породы птиц нецелесообразно, поэтому в них предусмотрено регулирование и поддержание нужных условий с помощью терморегуляторов. Если принято решение о создании самодельного терморегулятора для инкубатора, отнеситесь к этому со всей серьёзностью.

Выполнить такую работу под силу тем, кто освоил азы радиоэлектроники, умеет обращаться не только с паяльником, но и измерительными приборами. Кроме того, в работе пригодятся навыки по изготовлению печатных плат, сборке и настройке радиоэлектронных устройств.

В этой статье мы постараемся рассказать о том, как можно самостоятельно изготовить и отрегулировать терморегулятор для инкубации яиц.

Выбор схемы регулятора

Если взять за основу для изготовления терморегулятора заводские изделия, можно столкнуться с непреодолимыми трудностями по сборке, а особенно по настройке таких изделий.

Чтобы обойти лишние проблемы, лучше всего выбрать схему изделия доступную для изготовления в домашних условиях.

Главным критерием для любого типа терморегуляторов является обеспечения высокой чувствительности к перепадам внутренней температуры внутри инкубатора, а также мгновенное реагирование на эти изменения. «Самодельщики» в большинстве случаев применяют два варианта построения регуляторов:

  1. Построение прибора на основе электрической схемы и радиодеталей. Способ сложный и доступный для подготовленных специалистов;
  2. Изготовление регулятора на основе термостата от бытовой техники.

Давайте кратко рассмотрим оба варианта изготовления.

Изготовление терморегулятора на основе схемы и радиодеталей

На рисунке ниже показана принципиальная схема самодельного регулятора температурного режима при инкубации.

Если внимательно рассмотреть схему этого прибора, то можно убедиться, то для его сборки требуются широко распространённые радиокомпоненты.

Если вы хотите узнать узнать, сколько яиц несет перепелка в день , то советуем прочитать статью: //6sotok-dom.com/uchastok/ferma/skolko-yaits-neset-perepelka.html

Для самостоятельного изготовления прибора потребуется приобрести следующие радиодетали:

  • Стабилитрон любого типа, который сможет обеспечить стабилизацию напряжения в пределах 7-9 Вольт;
  • Два транзистора, один из них из МП 42 с любой буквой или аналогичный ему, второй из серии КТ 315, буквенный индекс прибора может быть любой;
  • Тиристор из серии КУ 201-КУ 202, буква в обозначении должна быть Н;
  • Четыре диода серии КД 202, желательно с буквенными обозначениями Н или НС. Можно использовать и другие полупроводниковые приборы, при условии их допустимой мощности не менее 600 Вт;
  • Регулировка режима производится переменным резистором любого типа сопротивлением от 30 до 50 кОм;
  • Резистор R5 должен иметь рассеиваемую мощность не менее 2Вт, остальные по 0,5 Вт;
  • Также нужно приобрести реле типа МКУ (многоконтактное унифицированное).
Читать еще:  Паяльник от прикуривателя своими руками

В схеме, представленной на рисунке, датчиком температуры выступает транзистор VT1, который размещают в стеклянной трубке и укладывают непосредственно на лоток с яйцами. При включении регулятора в сеть, срабатывает реле, его контакты размыкаются и инкубатор обогревается от ламп, которые подключаются к сети 220 Вольт.

При отключении от сети, контакты реле замыкаются и подключают в работу аккумулятор и автомобильные лампы для обогрева. При возобновлении подачи напряжения, реле снова срабатывает и подключает второй парой контактов зарядное устройство для подзаряда аккумулятора. Переменным резистором устанавливается порог требуемой температуры. Особых требований к зарядному устройству нет, можно использовать любое имеющееся в наличии.

Термостат в качестве регулятора

Этот вариант более прост в изготовлении и в то же время весьма надёжен в эксплуатации. Для его изготовления потребуется найти любой термостат от бытовой техники, например, от утюга.

Его нужно определённым образом подготовить к работе. Для этого любым доступным способом наполняют корпус термостата эфиром и хорошо запаивают.

Эфир очень чутко реагирует на малейшее изменение наружной температуры, что приводит к изменению состояния корпуса термостата. Винт, который припаян к корпусу, жёстко связан с контактами. В нужный момент происходит включение или отключение нагревательного элемента. Нужную температуру выставляют при вращении регулировочного винта (под номером 6 на рисунке).

Обращаем Ваше внимание, что перед закладкой яиц, нужно произвести настройку нужной температуры и прогреть инкубатор.

Итак, как видно из описания, изготовить терморегулятор в инкубатор не сложно. Это может выполнить даже школьник, который увлекается радиоэлектроникой. Схема не содержит дефицитных радиокомпонентов. Элементы устанавливают на печатную плату или монтируют навесным монтажом.

Если самостоятельно изготавливается «электрическая наседка», полезно для увеличения процентов вывода молодняка птицы, предусмотреть устройство для автоматического поворота яиц в инкубаторе.
Из этого видео Вы узнаете как сделать терморегулятор для инкубатора своими руками:

Источник: 6sotok-dom.com

Простая и надёжная схема терморегулятора для инкубатора

ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать R3 можно по таблице ниже.

Источник: www.mastervintik.ru

Терморегулятор для инкубатора своими руками. Схема

В наше время многие сельчане приобретают домашние инкубаторы в связи с тем, что молодняк домашней птицы на рынках слишком дорог. Обычно, используются конструкции изготовленные своими руками, представляющая собой термически изолированную коробку с обогревателем, снабженную лотками для яиц.

Для успешного вывода молодняка температура внутри инкубатора должна составлять +/- 0.1 градуса. Для этого используют самодельный терморегулятор для инкубатора, схема одного из которых представлена ниже.

Терморегулятор для инкубатора своими руками — описание конструкции

Нагреватель подключается в цепь тиристора VD5. Схема термореле питается от стабилизированного источника питания (VD7, С1, R1). В результате охлаждения терморезистора R6, его сопротивление увеличивается, в результате чего, потенциал на базе транзистора VT3 уменьшается до тех пор, пока транзисторы VT2, VT3 не закроются.

После того как транзисторы VT2 и VT3 закроются током, протекающим через резисторы R2, R4, откроется транзистор VT1 и связанный с ним тиристор VD5. Нагревательный элемент будет греть до тех пор, покуда температура в зоне местоположения терморезистора не достигнет такого значения, при котором сопротивление терморезистора R6 уменьшится, и вновь не откроются транзисторы V2 и V3.

Транзистор VT1 и тиристор VD5 закроются, и процесс повторится до установления состояния равновесия. Терморезистор R6 с отрицательным ТКС.

Детали устройства

В схеме терморегулятора можно применить любые биполярные транзисторы с коэффициентом усиления не менее 50. Диоды можно заменить на другие с прямым ток 3А и обратным напряжением 400…600 В. Тиристор необходимо выбрать в расчете на прямое напряжение не менее 400 В.

Схема не требует настройки, за исключением установки необходимой температуры внутри инкубатора. Температура устанавливается резистором R7.

Внимание! Так как элементы схемы находятся под напряжением электросети, то следует соблюдать меры электробезопасности при наладке прибора.

Источник: www.joyta.ru

Ссылка на основную публикацию
Adblock
detector