Осциллограф на микроконтроллере своими руками

Осциллограф на микроконтроллере своими руками

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

PICO SCOPE — это миниатюрный цифровой осциллограф. Основа его микроконтроллер, Atmega8. Естественно ЖК, как у nokia 3310 — это небольшие размеры и низкая стоимость. Имеется возможность измерения переменного напряжения.

Схема и печатная плата были разработаны в KiCad, программное обеспечение в Eclipse AVR и корпус во FreeCad.

Основные параметры PICO SCOPE

  • частота дискретизации до 50 кГц
  • диапазон входного напряжения для зонда 1: 1 — макс +/- 100 В
  • разрешение 20V / d, 10V / d, 5V / d, 2V / d, 1V / d, 500mV / d, 200mV / d, 100mV / d, 50mV / d
  • временные интервалы 200us / d, 500us / d, 1ms / d, 2ms / d, 5ms / d, 10ms / d, 20ms / d, 50ms / d, 100ms / d, 200ms / d, 500ms / d
  • изменение формы сигнала на экране
  • режимы запуска AUTO, MANUAL, НОРМ, ВЫКЛ.
  • запуск по нарастающему или падающему фронту
  • регулируемый уровень запуска
  • выбор датчика 1:1, 1:10 и 1:100
  • кривые напряжения и времени
  • сохранение текущих настроек
  • питание от батареи CR2032.

Для начинающих электронщиков это будет идеальный измерительный инструмент, даже в плане простых поделок.

Он выглядит очень аккуратно и эстетично. Во многих случаях его достаточно, чтоб например проверить сигналы управления двигателем без необходимости запуска большого стационарного осциллографа.

ПикоСкоп потребляет около 4 мА во время работы. Один из протестированных ЖК дисплеев работал даже при 2,2 В, терял контраст, но все еще работал. Конечно батарейка CR2032 не лучшая идея, но цель была предельно упростить конструкцию. Конечно лучшим решением была бы литий-ионная батарея, но для нее нужно добавить систему зарядки и разъём ЗУ.

Источник: 2shemi.ru

Миниатюрный осциллограф на микроконтроллере AVR XMEGA с OLED дисплеем. Часть 1. Схемотехническое решение

Проект Xprotolab, разработанный компанией Gabotronics, являющийся миниатюрным измерительным прибором с богатым набором функций и возможностей, построен на микроконтроллере компании Atmel семейства AVR XMEGA. Для визуализации данных, организации пользовательского интерфейса и меню управления используется графический OLED дисплей с разрешением 128×64 точки с широким углом обзора. Все электронные компоненты и органы управления размещаются на двухсторонней печатной плате, размеры которой не превышают 25.4 мм × 40.64 мм. Кроме того, проект может использоваться в качестве отладочной платы для микроконтроллеров семейства AVR XMEGA.

Отличительные особенности устройства:

  • основа устройства – микроконтроллер ATXMEGA32A4:
    • Flash-память программ — 32 КБайт;
    • SRAM — 4 КБайт;
    • EEPROM – 1КБайт;
  • режимы работы:
    • осциллограф смешанных сигналов;
    • генератор сигналов произвольной формы;
    • 8-канальный логический анализатор;
    • анализатор спектра;
  • возможность одновременной работы генератора и осциллографа;
  • графический OLED дисплей, размер 0.96», разрешение 128×64 точки;
  • PDI интерфейс для программирования и отладки;
  • управление с помощью 4-кнопочной клавиатуры;
  • USB коннектор для питания устройства (в дальнейшем программная реализация USB интерфейса).

Спецификация измерительного прибора:

  • осциллограф:
    • 2 аналоговых канала;
    • 8 цифровых каналов;
    • аналоговая полоса пропускания — 318 кГц;
    • максимальная скорость выборки — 2 Msps;
    • разрешение — 8 бит;
    • аналоговая синхронизация и внешняя цифровая синхронизация;
    • вертикальный и горизонтальный курсоры;
    • входное сопротивление – 1 МОм;
    • размер буфера для каждого канала – 256;
    • максимальное входное напряжение — ±10 В;
  • генератор сигналов произвольной формы:
    • 1 аналоговый канал;
    • максимальная скорость конвертирования – 1 Msps;
    • аналоговая полоса пропускания – 66 кГц;
    • разрешение – 8 бит;
    • низкое выходное сопротивление;
    • размер буфера – 256;
    • максимальное выходное напряжение — ±2 В.

Принципиальная схема прибора

Входные аналоговые каналы осциллографа, выходной канал генератора сигналов – выполнены на JFET операционном усилителе TL064 с низким потреблением. На таком же операционном усилителе выполнен источник опорного напряжения для встроенного аналого-цифрового преобразователя микроконтроллера.

Питание прибор получает от USB интерфейса, однако можно применить внешний источник напряжения 5 В, но следует быть внимательным и необходимо исключить возможность одновременного подключения внешнего источника и USB интерфейса. Напряжение питания микроконтроллера составляет 3.3 В, с этой целью установлен регулятор напряжения 3.3 В AP7333. Также, напряжение 3.3 В необходимо для питания контроллера дисплея.

Для питания операционных усилителей требуется двуполярный источник напряжения + 5 В и –5 В. Для получения отрицательного напряжения –5 В установлен интегральный DC/DC преобразователь TPS60403 (charge pump).

Графический OLED дисплей UG-2864HSWEG01 является монохромным и имеет встроенный контроллер SSD1306.

Источником тактовой частоты для микроконтроллера является внешний кварцевый резонатор 16 МГц.

Управление, навигация по меню, настройка параметров осуществляются с помощью клавиатуры K1-K4.

Для программирования (а также для отладки ПО) микроконтроллера используется 2-проводный интерфейс PDI. Данный интерфейс поддерживает высокоскоростное программирование всех пространств энергонезависимой памяти, в т.ч. Flash-память, EEPOM, Fuse-биты, Lock-биты и сигнатурный код пользователя. Программирование осуществляется путем доступа к контроллеру энергонезависимой памяти (NVM-контроллер) и выполнения NVM-контроллером команд.

Внешний вид печатной платы

Демонстрация работы прибора

Загрузки

Принципиальная схема (pdf) – скачать
Список компонентов (xls) – скачать
Расположение элементов на печатной плате (pdf) — скачать

Следующая часть статьи посвящена руководству пользователя, пользовательскому интерфейсу, меню управления и настройки параметров прибора, а также будет предоставлен исходный код программы и hex-файл для программирования микроконтроллера.

Компания Gabotronics реализует все необходимые для сборки комплектующие, печатную плату, а также готовое к работе устройство.

Перевод: Vadim по заказу РадиоЛоцман

Источник: www.rlocman.ru

Тег Осциллограф

Прибор для исследования (наблюдения, записи, измерения) амплитудных и временных характеристик электрического сигнала.

Осциллографический пробник на ATmega8

Простой осциллографический пробник на микроконтроллере AtMega8 и дисплее от Nokia 1100

LCD осциллограф на Arduino

Двухканальный USB осциллограф

Все чаще и чаще используются приборы подключаемые к компьютеру по USB. Часто они бывают дешевле и функциональнее обычных приборов. В этой статье описано создание USB осциллографа с максимальной частотой 10 кГц при входном напряжении ± 16В. Он гораздо лучше других подключаемых к компьютеру осциллографов. Имеет гораздо больше возможностей, чем ПК-осциллографы

Читать еще:  Заземляющий контур частного дома своими руками

Двухканальный USB осциллограф на STM32 — Miniscope v2c

Проект недорого низкоскоростного двухканального USB осциллографа на STM32F103C8T6 — Miniscope v2c.

Цифровой LCD-осциллограф

В данной статье приведен простейший осциллограф с выводом данных на текстовый LCD экранчик. Схема построена с использованием PIC-микроконтроллера PIC18F452, но может быть адаптирована и для других PIC.

Простой USB-осциллограф

Проект USB-осциллографа, который вы сможете собрать своими руками. Возможности USB-осциллографа минимальны, но для многих радиолюбительских задач вполне сойдет. Также, схема данного USB-осциллографа может использоваться как основа для построения более серьезных схем. В основе схемы стоит микроконтроллер Atmel Tiny45.

Автор: Колтыков А.В.

Самодельный осциллограф на AVR

Представлен проект изготовления самодельного низкоскоростного осциллографа на базе микроконтроллера AVR. Частота измерения до 7.7кГц, экранчик 128×64.

Автор: Колтыков А.В.

Цифровой RS232 осциллограф для ПК

Проект цифровой осциллографа для компьютера с передачей данных по RS232.

Android Bluetooth осциллограф

Как АЦП для двух входов в схеме используется PIC33FJ16GS504 Microchip. Обработанные данные передаются в телефон через Bluetooth модуль LMX9838

Осциллограф своими руками

Осциллограф на PIC18F2550 измеряет среднее, максимальное, минимальное, пиковое напряжения и пересечение нулевого уровня. Он имеет встроенную функцию триггера, который может быть использован для остановки сигнала для его детального изучения. Осциллограф измеряет напряжение в пределах 0-5В, 0-2.5В и 0-1,25. Основным недостатком является низкая частота дискретизации (

60 кГц), а также то, что входы ограничены ограничениями АЦП микроконтроллера.

1999-2019 Сайт-ПАЯЛЬНИК ‘cxem.net’

При использовании материалов сайта, обязательна
ссылка на сайт ПАЯЛЬНИК и первоисточник

Источник: cxem.net

Как собрать осциллограф своими руками — 3 рабочие схемы, советы по монтажу, видео

  1. Осциллограф на PIC18F2550
  2. Цифровой осциллограф для ПК
  3. На AVR — инструкция по сборке, характеристики
  4. Видео

Рассмотрим 3 рабочие схемы осциллографов. Первый прибор собран на микроконтроллере PIC18F2550. Второй осциллограф — цифровой, в основе третьего — микроконтроллер AVR. Поговорим о каждом по порядку.

Осциллограф на PIC18F2550 своими руками — схема, инструкция по сборке

Осциллограф на PIC18F2550 измеряет среднее, максимальное, минимальное, пиковое напряжения и пересечение нулевого уровня. Осциллограф имеет встроенную функцию триггера, который может быть использован для остановки сигнала для его детального изучения. Масштаб времени для отображения может быть легко изменён функцией changeTimeDivision.

Осциллограф измеряет напряжение в пределах 0–5В, 0–2.5В и 0–1,25. Основным недостатком этого осциллографа является низкая частота дискретизации (

60 кГц), а также тот факт, что входы ограничены ограничениями АЦП микроконтроллера. Тем не менее, это очень хороший прибор и первым мы рассмотрим именно его схему.

Схема осциллографа на PIC18F2550

Исходники и прошивку можно будет скачать ниже. Теперь давайте детальнее остановимся на каждом блоке схемы.

Напряжение поступает с 9-вольтовой батареи на интегральный стабилизатор напряжения TC1262-5.0V для обеспечения стабильных 5В для питания микроконтроллера и дисплея. На выходе стоит 1мкФ конденсатор.

Графический ЖК дисплей AGM1264F с разрешением 128х64 пикселей оснащен встроенными контроллером KS0108. Он имеет светодиодную подсветку и генератор отрицательного напряжения для управления.

Вывод A0 настроен на аналоговый вход. Обратите внимание, что сопротивление источника сигнала влияет на напряжение смещения на аналоговом входе. Максимально рекомендованное сопротивление составляет 2.5 кОм.

Микроконтроллер PIC18F2550 работает на частоте 48 МГц от внутреннего генератора. R1 представляет собой нагрузочный резистор, необходимый для работы. C1 является стабилизирующим конденсатором. Компонент пометкой «RES» является 20 MHz резонатором.

Выводы USART должны быть подсоединены к RS-232 конвертеру для подключения к ПК для обновления прошивки. После этого он может быть отключен.

Необходимые детали для сборки осциллографа на PIC18F2550 и прошивка

  • МК PIC 8-бит (IC1) — PIC18F2550
  • Линейный регулятор (IC2) — TC1264, 5 Вольт.
  • Конденсатор (С1) — 0.22 мкФ.
  • Электролитический конденсатор (С2) — 1 мкФ.
  • 2 резистора (R1, R3) — 3.3 кОм и 5 Ом соответственно.
  • Подстроечный резистор (R2) — 10 кОм.
  • Кварцевый резонатор (RES) — 20 МГц.
  • LCD-дисплей — AGM1264F.
  • Батарея питания (G1) — 9 В
  • 3 разъёма — JP1 для подключения дисплея, JP2 для обновления прошивки (RS-232) и JP3 для входа аналогового сигнала.

Микроконтроллер должен быть прошит файлом «SAC_tinybld18F2550usb _20MHz_115200_48MHz». Его можно скачать ниже.

Видео, как работает осциллограф на PIC18F2550:

Цифровой осциллограф RS232 для ПК

Рассмотрим простое решение для создания цифрового компьютерного осциллографа. Устройство построено на базе восьмиразрядного процессора PIC12F675.

Схема цифрового осциллографа для компьютера

Ниже представлена структурная схема осциллографа:

Процессор работает на частоте 20 МГц. Микроконтроллер непрерывно измеряет входное напряжение, преобразовывает его и отправляет цифровое значение на последовательный порт компьютера. Скорость передачи данных последовательного порта — 115кБит и, как показано на следующем рисунке, данные сканируются и отправляются с частотой около 7,5 кГц (134 мкс).

Вот принципиальная схема самого цифрового осциллографа:

Основа схемы — микроконтроллер PIC12F675 (микросхема U2), который работает с тактовой частотой 20 МГц кристалла Y1. J1 — стандартный разъем для подключения питания в 9–12 В, которое затем стабилизируется на U1 до 5 В для питания процессора.

  • Узнайте, как сделать щуп для осциллографа своими руками

После U2 в схему добавляется простой преобразователь TTL уровня с последовательным портом RS232 персонального компьютера. Он построен на базе транзистора BC337 (Q1) и резисторов R1 и R3. Вход 5 микроконтроллера ведет к переключателю S1. В своей основной позиции (1–2) прибор переключается в режим осциллографа постоянного тока (DC измерений), который способен отображать входной сигнал 0–5В. Во второй позиции — в режим осциллографа переменного тока. В этом положении максимальное напряжение — от -2,5 до +2,5 В. Конденсатор С6 подойдет керамический 22000nF, чтобы наблюдать низкие частоты без особых искажений.

Читать еще:  Вальцовка профильной трубы своими руками

При необходимости можно добавить дополнительные входной аттенюатор (сплиттер), или ОУ.

Необходимые радиоэлементы

  • Линейный регулятор (U1) — LM78L05.
  • МК PIC 8-бит (U2) — PIC12F675 (675-I/P).
  • Биполярный транзистор (Q1) — BC337.
  • 6 конденсаторов — С1, С2, С5 (3х0.1 мкФ); С3, С4 (2х22 пФ); С6 (22 мкФ)
  • 4 резистора — R1, R3 (2х1 кОм) и R2, R4 (2х270 кОм).
  • Кварцевый резонатор (Y1) — 20 МГц.
  • Переключатель (S1)
  • 3 разъема — J1 питания, J2 RS232, J3 входа сигнала.

Программное обеспечение

Для управления на Windows доступна простая программа на Visual Basic. Её можно скачать в архиве ниже.

Программа запускается сразу и ожидает появления данных на последовательном порте COM1. Слева — четыре ползунка, используемые для измерения периода и напряжения сигнала. Затем идут вкл/выкл синхронизации, поля для масштабирования или изменения значений размера выборки.

При сборке можно не делать печатную плату, а смонтировать все в небольшой пластиковой коробке навесным монтажом. Корпус должен иметь отверстия для разъема RS232 переключателя, входного гнезда и гнезда питания.

Прошивку для процессора можно скачать в конце статьи. Биты конфигурации (fuse) в процессе программирования должны быть установлены следующим образом:

Вот фото готового прототипа цифрового осциллографа:

Ниже вы можете скачать исходник, прошивку и ПО для Windows.

Осциллограф своими руками на AVR — инструкция по сборке, характеристики

Характеристики осциллографа на AVR:

  1. Частота измерения: 10 Гц–7.7 кГц.
  2. Макс. входное напряжение: 24В AC/30В DC.
  3. Напряжение питания: 12В DC.
  4. Разрешение экрана: 128×64 пикселей.
  5. Область экрана осциллограммы: 100×64 пикселей.
  6. Информационная область экрана: 28×64 пикселей.
  7. Режим триггера: автоматический.

Рассмотрим проект осциллографа с использованием МК PIC18F2550 и графического LCD с контроллером KS0108. В качестве среды разработки здесь использована WinAVR, которая основывается на open source AVR-GNU компиляторе и прекрасно работает с AVR Studio 4. Графическую библиотека разработана специально для данного проекта.

При измерении прямоугольного сигнала, максимальная частота, при которой можно увидеть хорошую осциллограмму составляет около 5 кГц. Для других форм сигналов (синусоида или треугольный сигнал) максимальная частота составляет около 1 кГц.

Схема осциллографа на AVR

Принципиальная схема AVR-осциллографа приведена ниже:

Напряжение питания схемы составляет 12 вольт постоянного тока. Из этого напряжения, в дальнейшем получается еще 2 напряжения: +8.2В для IC1 и +5В — для IC2, IC3.

  • Схема светодиодного осциллографического пробника

Устройство может измерять входное напряжение от +2.5В до -2.5В или от 0 до +5В, зависящее от позиции переключателя S1 (выбор типа входного тока: постоянный или переменный). При использовании пробника 1:10, входное напряжение соответственно может быть увеличено в 10 раз. Кроме того, переключателем S2 можно установить дополнительно деление напряжения на 2.

Необходимые радиоэлементы

  • Операционный усилитель (IC1) — LM358.
  • LCD-дисплей (IC2) — DEM128064A (128×64, контроллер KS0108).
  • МК AVR 8-бит (IC3) — ATmega32.
  • Линейный регулятор (IC4) — LM7805.
  • Стабилитрон (D1) — 1N4738A, 8.2В.
  • Выпрямительный диод (D2) — 1N4007.
  • 7 конденсаторов — C1 (470 нФ); C2 (27 пФ); C4, C7, C9 (3х100 нФ); C5, C6 (2х22 пФ).
  • 2 электролитических конденсатора — C3 (22 мкФ 16 В) и C8 (100 мкФ 25 В).
  • 7 резисторов — R1, R2, R4 (3х1 МОм); R3, R5 (2х390 кОм); R6 (56 Ом); R7 (220 Ом).
  • 2 подстроечных резистора (P1, P2) — 10 кОм и 22 кОм соответственно.
  • Кварц (X1) — 16 МГц.
  • 3 переключателя (S1, S2, S5).
  • 5 кнопок (S3, S4, S6–S8) — замыкающие.
  • 2 разъёма (K1, K2) — 2 контакта вход сигнала, 2 контакта питание.

Прошивка ATmega32 и настройка

Файл прошивки: AVR_oscilloscope.hex, можно будет скачать ниже. При выборе фьюзов необходимо указать использование внешнего кварца. После этого необходимо обязательно отключить JTAG интерфейс. Если этого не сделать, то на осциллографе будет отображаться экран инициализации, а после он будет уходить в перезагрузку.

Для настройки прибора нужно выполнить всего 2 вещи: настроить контрастность LCD при помощи подстроечного резистора Р2 и выставить центр осциллограммы при помощи подстроечного резистора Р1.

Использование

Вы можете перемещать луч осциллограммы вверх или вниз путем нажатия кнопок S8 и S4. Один квадрат на экране, соответствует 1В.

При помощи кнопок S7 и S3 можно увеличивать или уменьшать частоту измерений. Минимальная частота формы сигнала, которая может быть отображена на LCD составляет 460 Гц. Если необходимо посмотреть сигнал с более низкой частотой, например, 30 Гц, то необходимо нажать S7 для сжатия осциллограммы или S3 — для растяжения.

В осциллографе используется автоматический режим триггера. Это означает, что если входной сигнал повторяющийся (к примеру треугольник) то триггер работает хорошо. Но если форма сигнала постоянно меняется (к примеру какая-то последовательность данных), то для фиксации изображения необходимо нажать кнопку S6. Повторное нажатие S6 возвращает в нормальный режим.

Фото готового AVR осциллографа:

Видео работы осциллографа на AVR:


Источник: tehnoobzor.com

USB осциллограф на PIC микроконтроллере

Для разных настроек и поиска неисправностей во всяких преобразователях питания, схемах управления бытовой техникой, для изучения всяких устройств и т.д., там где не требуются точные измерения и высокие частоты, а нужно просто посмотреть на форму сигнала частотой, скажем, до пары мегагерц — более чем достаточно.

Кнопка S2 — это часть железа нужного для бутлоадера. Если при подключении осциллографа к USB держать её нажатой, то PIC заработает в режиме бутлоадера и можно будет обновить прошивку осциллографа при помощи соответствующей утилиты. В качестве АЦП (IC3) была использована «телевизионная» микросхема — TDA8708A. Она вполне доступна во всяких «Чип и Дип»ах и прочих местах добычи деталей. На самом деле это не только АЦП для видеосигнала, но и коммутатор входов, выравниватель и ограничитель уровней белого — чёрного и т.д. Но все эти прелести в данной конструкции не используются. АЦП весьма шустр — частота дискретизации — 30 МГц. В схеме он работает на тактовой частоте 12 МГц — быстрее не нужно, потому что PIC18F2550 просто не сможет быстрее считывать данные. А чем выше частота — тем больше потребление АЦП. Вместо TDA8708A можно использовать любой другой быстродействующий АЦП с параллельным выводом данных, например TDA8703 или что-нибудь от Analog Devices.

Читать еще:  Самодельные приспособления для электрорубанка

Тактовую частоту для АЦП удалось хитрым образом извлечь из PIC’а — там запущен ШИМ с частотой 12 МГц и скважностью 0.25. Тактовый импульс положительной полярности проходит в цикле Q1 PIC’а так что при любом обращении к порту B, которое происходит в цикле Q2 данные АЦП будут уже готовы. Ядро PIC’а работает на частоте 48 МГц, получаемой через PLL от кварца 4 МГц. Команда копирования из регистра в регистр выполняется за 2 такта или 8 циклов. Таким образом, данные АЦП возможно сохранять в память с максимальной частотой 6 МГц при помощи непрерывной последовательности команд MOVFF PORTB, POSTINC0. Для буфера данных используется один банк RAM PIC18F2550 размером 256 байт.

Меньшие частоты дискретизации реализуются добавлением задержки между командами MOVFF. В прошивке реализована простейшая синхронизация по отрицательному или положительному фронту входного сигнала. Цикл сбора данных в буфер запускается командой от PC по USB, после чего можно эти данные по USB прочитать. В результате PC получает 256 8-битных отсчётов которые может, например, отобразить в виде изображения. Входная цепь проста до безобразия. Делитель входного напряжения без всяких изысков сделан на поворотном переключателе. К сожалению не удалось придумать как передавать в PIC положение переключателя, поэтому в графической морде осциллографа есть только значения напряжения в относительных единицах — делениях шкалы. Усилитель входного сигнала (IC2B) работает с усилением в 10 раз, смещение нуля, необходимое для АЦП (он воспринимает сигнал в диапазоне от Vcc — 2.41В до Vcc — 1.41В) обеспечивается напряжением с программируемого генератора опорного напряжения PIC (CVREF IC1, R7,R9) и делителем от отрицательного напряжения питания (R6,R10, R8). Т.к. в корпусе ОУ был «лишний» усилитель (IC2A), я использовал его как повторитель напряжения смещения.

Не забудьте про емкостные цепочки для частотной компенсации входной ёмкости вашего ОУ и ограничивающих диодов, которые отсутствуют на схеме — нужно подобрать ёмкости параллельно резисторам делителя и резистору R1, иначе частотные характеристики входной цепи загубят всю полосу пропускания. С постоянным током всё просто — входное сопротивление ОУ и закрытых диодов на порядки выше сопротивления делителя, так что делитель можно просто посчитать не учитывая входное сопротивление ОУ. Для переменного тока иначе — входная ёмкость ОУ и диодов составляют значительную величину по сравнению с ёмкостью делителя. Из сопротивления делителя и входной ёмкости ОУ и диодов получается пассивный ФНЧ, который искажает входной сигнал.

Чтобы нейтрализовать этот эффект нужно сделать так, чтобы входная ёмкость ОУ и диодов стала значительно меньше ёмкости делителя. Это можно сделать соорудив емкостной делитель параллельно резистивному. Посчитать такой делитель сложно, т.к. неизвестна как входная ёмкость схемы, так и ёмкость монтажа. Проще его подобрать.

Способ подбора такой:
1. Поставить конденсатор ёмкостью примерно 1000 пФ параллельно R18.
2. Выбрать самый чувствительный предел, подать на вход прямоугольные импульсы с частотой 1 кГц и размахом в несколько делений шкалы и подобрать конденсатор параллельно R1 так, чтобы прямоугольники на экране выглядели прямоугольниками, без пиков или завалов на фронтах.
3. Повторить операцию для каждого следующего предела, подбирая конденсаторы параллельно каждому резистору делителя соответственно пределу.
4. Повторить процесс с начала, и убедиться, что на всех пределах всё в порядке ( может проявиться ёмкость монтажа конденсаторов ), и, если что-то не так, слегка подкорректировать ёмкости.

Сам ОУ — это Analog Devices AD823. Самая дорогая часть осциллографа. 🙂 Но зато полоса 16 МГц — что весьма неплохо.А кроме того, это первое из шустрого, что попалось в розничной продаже за вменяемые деньги.

Конечно же этот сдвоенный ОУ без всяких переделок можно поменять на что-то типа LM2904, но тогда придётся ограничится сигналами звукового диапазона. Больше 20-30 кГц оно не потянет.

Ну и форму прямоугольных, например, сигналов будет слегка искажать. А вот если удастся найти что-то типа OPA2350 (38МГц) — то будет наоборот замечательно.

Источник отрицательного напряжения питания для ОУ сделан на хорошо известной charge-pump ICL7660. Минимум обвязки и никаких индуктивностей. Ток по выходу -5 В конечно у неё невелик, но нам много и не надо. Цепи питания аналоговой части изолированы от помех цифры индуктивностями и ёмкостями (L2, L3, C5, C6). Индуктивности попались номиналом 180 uГн, вот их и поставил. Никаких помех по питанию даже на самом чувствительном пределе. Прошивка PIC заливается по USB с помощью бутлоадера который сидит с 0-го адреса в памяти программ и запускается если при включении удерживать нажатой кнопку S2. Так что прежде чем прошивать PIC — залейте туда сначала бутлоадер — будет проще менять прошивки.
Исходники драйвера осциллографа для ядер 2.6.X находятся в архиве с прошивкой. Там же есть консольная утилитка для проверки работоспособности осциллографа. Её исходники стоит посмотреть, чтобы разобраться как общаться с осциллографом, если хочется написать для него свой софт.
Программа для компьютера проста и аскетична, ее вид показан на рисунках 2 и 3. Подключить осциллограф к USB и запустить qoscilloscope. Требуется QT4.

Рис2. Программа qoscilloscope

На рисунке 4 показан смонтированный осциллограф.

Источник: meandr.org

Ссылка на основную публикацию
Adblock
detector