Лазерная рулетка своими руками

Лазерная рулетка своими руками

Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
Далее будут рассмотрены основные настройки дельта принтера.
Для управления и настройки принтера мы используем программу Pronterface.
Калибровка принтера делится на три этапа:

1 Этап. Корректируем плоскость по трем точкам

Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

  • Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
    И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
  • Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
  • Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
  • Теперь приступаем непосредственно к настройке наших трех точек.
    Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.
  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)
    Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
    M666 Y0.75
    M500
    G28
  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.
  • 2 Этап. Исправляем линзу

    После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.

    3 Этап. Находим истинную высоту от сопла до столика

    Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости — столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
    1 Способ:
    Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

    • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
    • Командой M666 L получаем полное значение высоты (Параметр H)
    • После чего вычитаем из полной высоты фактическую высоту.
    • Получившееся значение вычитаем из высоты щупа.

    Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
    G666 H 235.2
    M500
    G28

    2 Способ:
    Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

    Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.

    Вы можете помочь и перевести немного средств на развитие сайта

    Источник: itnan.ru

    Денисюк Роман Эдуардович

    Факультет компьютерных информационных кехнологий и автоматики

    Кафедра электронной техники

    Специальность «Научные, аналитические и экологические приборы и системы»

    Обоснование, разработка и исследование лазерного дальномера для систем машинного зрения роботов

    Научный руководитель: к. т. н., доц. Кузнецов Дмитрий Николаевич

    Лазерный дальномер своими руками

    Содержание

    В продаже, есть большое количество дешевых датчиков – дальномеров, в их числе ультразвуковые и инфракрасные. Все эти устройства работают хорошо, но из-за значительного веса, не подходят для летающих роботов. Миниатюрный робот вертолет, например, может нести около 100&nbspг полезной нагрузки. Это даёт возможность использовать, для поиска препятствий и предотвращения столкновений с ними, машинное зрение, используя веб-камеры (или другие миниатюрные, беспроводные камеры с подключением к компьютеру через USB). А еще лучше, установить две камеры, что обеспечит роботу, стерео зрение, таким образом, благодаря информации о глубине изображения, улучшится обход препятствий. Недостатком этой идеи является сравнительно большой вес камеры.

    1. Лазерный дальномер из веб-камеры

    1.1. Принцип работы

    Лазерная точка проектируется на возможное препятствие, лежащие в поле зрения камеры, расстояние до этого препятствия может быть легко вычислено. Математика здесь очень простая, обработку данных лучше всего производить в компьютерных приложениях. (см. рис. 1.1)

    Рисунок 1.1 – Принцип действия дальномера

    Итак, вот как это работает. Лазерный луч проецируется на объект в поле зрения камеры. Этот луч должен быть идеально параллелен оптической оси камеры. Лазерная точка захватывается вместе с остальной сценой. Простой алгоритм ищет на изображении яркие пиксели. Предполагая, что точка лазера является яркой на фоне более тёмной обстановки (я использовал обычную лазерную указку купленную в магазине за доллар), изначально положение точки в кадре не известно. Затем нам нужно рассчитать дальность до объекта, основываясь на том, где вдоль оси Y находится лазерная точка, чем ближе она к центру изображения, тем дальше находится объект.

    Как мы видим из рисунка выше, расстояние (D) может быть рассчитано по формуле:

    Конечно, для решения этого уравнения, вы должны знать, h – фиксированное расстояние между лазерной указкой и камерой. Знаменатель высчитывается так:

    Для калибровки системы, мы будем собирать серию измерений, где нам известно, дальность до цели, а также количество пикселей центра изображения до точки лазера.

    Используя следующее уравнение, мы можем вычислить угол наклона в зависимости от значения h, а также фактическое расстояние до каждой точки.

    Теперь у нас есть расчётные значения, мы можем придумать отношения, что позволяет нам рассчитывать, дальность, зная количеством пикселей от центра изображения. Можно использовать линейную зависимость.

    Зная калибровочные данные, можно посчитать:

    1.2. Компоненты

    Для сборки дальномера требуется не так много деталей: веб-камера и лазерная указка. Для соединения лазерной указки и камеры необходимо вырезать раму из жести или фанеры:

    Собранный дальномер должен выглядеть примерно следующим образом:

    1.3. Программное обеспечение

    Программа-обработчик написана на двух языках: Visual C&nbsp++ и Visual Basic. Вы, вероятно, подумаете, что программа на Visual Basic проще, чем на VC&nbsp++ в плане кода, но во всём есть компромисс. Код на VC&nbsp++ можно собрать бесплатно (при условии, что у вас есть Visual Studio), в то время как код VB требует приобретение программных пакетов сторонних производителей (в дополнение к Visual Studio).

    Читать еще:  Самодельная мясорубка с двигателем от стиральной машины

    Коды программ написанных на Visual Basic и Visual C&nbsp++ можно найти по ссылке: www.cxem.net

    1.4. Дальнейшая работа

    Одним из конкретных улучшений, которые могут быть внесены в этот дальномер, является проекция горизонтальной лазерной линии, вместо точки. Таким образом, мы сможем вычислять расстояние до цели, для каждого ряда пикселов на изображении [1].

    2. Фазовый лазерный дальномер

    В даном разделе описаны натуральные испытания макетного образца фазового лазерного дальномера, полученного собственными силами.

    2.1. Выбор метода измерений

    Принцип действия дальномера физического типа заключается в измерении времени, которое затрачивает посланный дальномером сигнал для прохождения расстояния до объекта и обратно. Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта.

    Существует несколько методов измерения дальности:

    1. Метод триангуляции.

    3. Импульсный метод.

    4. Фазовый метод.

    Разрабатываемый лазерный дальномер предлагается выполнить но основе фазового метода. Фазовый метод измерения расстояний основан на определении разности фаз посылаемых и принимаемых модулированных сигналов.

    Режим работы устройства зависит от его температуры, с изменением которой незначительно изменяется фаза сигнала. Вследствие этого точное начало отсчета фазы определить нельзя. С этой целью фазовые измерения повторяются на эталонном отрезке (калибровочной линии) внутри прибора. Главное преимущество фазового метода измерения – более высокая точность, которая может достигать единиц миллиметров [2].

    2.2. Создание макетного образца

    Для проверки теоретических положений на практике, проверки устойчивости усилительных каскадов и предварительной оценки чувствительности и уровня шумов измерительного канала отраженного лазерного излучения был разработан и исследован его макетный образец.

    В качестве излучателя при разработке макетного образца использован стандартный модуль красного лазерного светодиода (см. рис. 2.1) мощностью 5&nbspмВт длиной волны 650&nbspнм.

    Рисунок 2.1 – Модуль лазерного светодиода

    Для регистрации отраженного лазерного излучения в качестве фотоприемника использован pin-фотодиод bpw24r (см. рис. 2.2). К преимуществам данного фотодиода следует отнести высокую чувствительность в красной области видимого спектра, узкую диаграмму направленности и малую емкость р-п-перехода (5&nbspпФ). Максимальная рабочая частота 35&nbspМГц.

    Рисунок 2.2 – PIN-фотодиод bpw24r

    Для генерации рабочего и опорного сигналов использован модуль DDS генератора сигналов на базе микросхемы AD9850 (см. рис. 2.3). Рабочий диапазон генерируемых синусоидальных колебаний лежит в пределах от 1&nbspГц до 40&nbspМГц, шаг перестройки 1&nbspГц, относительная нестабильность частоты 10 -5 .

    Рисунок 2.3 – Модуль AD9850 DDS генератора сигналов

    В качестве микропроцессорного модуля управления использована стандартная плата Arduino Uno (см. рис. 2.4) на базе современного микро-контроллера ATmega328 c тактовой частотой 16&nbspМГц.

    Рисунок 2.4 – Микропроцессорный модуль Arduino Uno

    На рисунке 2.5 приведена схема модулятора лазерного излучения. Гармоничный сигнал частотой 10 МГц и амплитудой 0,5 В с выхода DDS генератора поступает на электронный усилитель с коэффициентом усиления по напряжению KU&nbsp=&nbsp3, построен на базе операционного усилителя DA1 AD8042. С помощью подстроечного резистора R1 обеспечивается выбор оптимального положения рабочей точки по постоянному току.

    Рисунок 2.5 – Функциональная схема модулятора лазерного излучения

    На рисунке 2.6 представлена схема отраженного лазерного сигнала, состоящий из фотоусилителя на DA1, смесителя и двухкаскадного избирательного усилителя на DA2 и DA3. Фотопидсилювч превращает измерительный оптический сигнал в электрический. На выходе смесителя формируется низкочастотный разностный сигнал с частотой 1 кГц, который после фильтрации двухзвенный фильтром нижних частот (R3, R4, C4, C5) поступает на избирательный усилитель с коэффициентом усиления около 10000.

    Модулятор лазерного излучения и измерительного канала отражен-ного сигнала собраны на отдельных беспаечних монтажных платах (см. рис. 2.7 и 2.8). Программное обеспечение модуля разработано в среде Arduino 1.0.5. Для управления DDS генератором использована стандартная библиотека AH_AD9850.h .

    Рисунок 2.6 – Функциональная схема измерительного канала отраженного лазерного излучения

    В результате испытаний макетного образца получили:

    – Уровень шумов на выходе избирательного усилителя составляет 5&nbspмВ;

    – Уровень полезного сигнала на выходе избирательного усилителя при расстоянии до объекта 2 м составляет 200&nbspмВ;

    – Самовозбуждение усилителя отсутствует;

    – Внешняя засветка фотодиода на результаты измерений не влияет.

    Рисунок 2.7 – Макетная плата модулятора

    Рисунок 2.8 – Макетная плата измерительного канала отраженного сигнала

    Читать еще:  Самодельные детекторы скрытой проводки

    3. Заключение

    В целом результаты макетирование подтверждают способность предложенного способа измерений, основанного на технике прямого преобразования частоты. Чувствительность измерительного канала достаточна для регистрации отраженного лазерного сигнала. Уровень выходного сигнала позволяет в дальнейшем простыми средствами определять его фазу и вычислять расстояние до объекта.

    Источник: masters.donntu.org

    Лазерный дальномер: ремонт, принцип работы и пример самодельного измерителя

    Потребность проведения точных измерений, возникает практически во всех сферах деятельности современного человека: от мелкого ремесла, до крупного строительства. До недавних пор, самым актуальным и удобным прибором для определения размеров, считалась рулетка, оснащенная лентой с мерной шкалой. Массовое же развитие технологий, заложило основу инновационного принципа измерения, на котором базируются все современные лазерные дальномеры. В данной теме, мы проведем детальный разбор подобных устройств, расскажем, как они работают и какие могут иметь неполадки. Опишем способы устранения самых распространенных дефектов, а в завершении, дадим краткую инструкцию по изготовлению лазерного дальномера своими руками.

    Как работает лазерный дальномер

    Способ точного бесконтактного определения расстояния с выводом данных на дисплей, представляет собой сложную электронную схему. В основе конструкции лежит излучатель, приёмник, блок измерения времени и микропроцессор, чья совокупность позволяет нам в полной мере эксплуатировать лазерный дальномер. Устройство прибора, в более детальном разборе процессорных плат и модулей, имеет приличную сеть, чья структура лежит далеко за гранью понимания среднестатистического обывателя. Даже радиолюбители, увлекающиеся электроникой, собирают дальномеры из готовых элементов при помощи пайки и программирования.

    Говоря по сути, принцип работы лазерного дальномера базируется на скорости света и времени прохождения луча до поверхности и обратно. Выпущенный из излучателя лазер, отражается от первого попавшегося на пути твердого объекта (даже с большим углом преломления), и частично возвращается к устройству, где его распознает принимающий модуль и фиксирует время, потребовавшееся ему для преодоления этого расстояния. Поскольку свет перемещается со скоростью 299 792 458 метров в секунду или 29.2 сантиметров в микросекунду (мкс), то, зная затраченное на путь время, можно легко вычислить длину проделанного им пути. Таким образом, основная формула, используемая дальномерами, имеет следующий вид.

    Представленный выше принцип, относиться к импульсным дальномерам, имеющим максимально широкое представление на рынке строительного инструмента. Данные приборы имеют приличную точность с погрешностью от 0.5 до 3-х мм, в зависимости от встроенного датчика приема сигнала, чья скорость обработки должна быть молниеносно быстрой.

    Помимо импульсного, существует ещё фазовый способ измерения, все также основанный на лазере, но кардинально отличающийся по способу получения информации. В основе данного принципа лежит частота испускаемого лазера, которая не превышает 450 МГц (в среднем от 10 до 150). Вместо времени, здесь определяется разница фаз (исходящей и принимаемой), на основе которой рассчитывается расстояние до объекта. Фазовому дальномеру требуется больше времени для получения значения, но точность измерений превосходит импульсный.

    Неисправности лазерного дальномера

    Производство электронных измерительных приборов, подразумевает высочайшую точность сборки с обязательным контролем качества каждого изделия. Сложную конструкцию лазерных рулеток, стараются максимально изолировать от контакта с внешней средой и обезопасить от грубого физического воздействия. Поскольку эксплуатация устройств зачастую проходит в условиях повышенной опасности (в мастерских, на производствах или стой-площадках), они нередко подвергаются ударам и сильным вибрациям, способным нанести фатальный ущерб мельчайшим узлам устройства.

    Несмотря на общий принцип действия лазерных дальномеров, они зачастую имеют уникальный набор компонентов и программного обеспечения. Даже если корни неисправности будут схожими, то конструкция самой детали или схемы будет индивидуальной для каждой отдельно взятой модели. Проблемы физического характера, могут быть связаны с расфокусировкой лазерного луча, изломом откидной скобы, деформацией кнопок или корпуса. При желании и умелых руках, подобные дефекты можно устранить самостоятельно.

    Ремонт электронных компонентов требует куда более специфичных навыков, и даже специального образования. Неисправности такого рода, часто выражаются в проблемах с включением устройства, дисплеем, приёмником сигнала, определением заряда батареи. Количество дефектов, пропорционально функционалу, которым оснащен конкретный дальномер. Ремонт прибора своими руками, в случае неисправной электроники, не удастся выполнить без определенных познаний, и лучше будет отнести его в специализированный сервис на диагностику.

    Ремонт лазерного дальномера

    Если повреждения несут в основном физический характер, а электроника работает исправно, прибор можно восстановить самостоятельно, при наличии желания и смекалки. В первую очередь необходимо установить источник проблемы, исходя из имеющегося дефекта. В данной теме, мы рассмотрим 2 случая поломок на конкретных моделях, и приведем рекомендации по их устранению.

    Лазерный дальномер своими руками

    Даже при поверхностном разборе дальномера, быстро приходит понимание сложности конструкции, состоящей из уникальных микросхем, плат и различных компонентов. Точное измерение расстояния, с выводом данных на дисплей, требует навыков уверенного радиолюбителя (минимум), и знаний программирования. Большинство элементов, выпускается индивидуально для производителей подобных устройств, и в открытой продаже не встречается, что осложняет процесс самостоятельной сборки.

    По последним данным, на сегодняшний день, существует не много свободно распространяемых модулей лазерного измерителя, один из которых “CJMCU-530”, используемый в робототехнике, бытовых приборах, компьютерах и автофокусе камер. Производителем заявлена дистанция измерения до 2-х метров, но после 1.3 м, точность заметно падает. На оптимальной дистанции, погрешность составляет ± 1-3 мм. Подобные возможности мало подходят для строительных работ, и модель зачастую используется в автоматизации бытовых условий, как индикатор уровня воды в бочке, открывания дверей, лазерной сигнализации и прочих, разнообразных проектах.

    Чтобы изготовить подобный дальномер своими руками, специализированные навыки не требуются. Достаточно иметь в наличии паяльник и компьютер для загрузки программы. Работает модель только в совокупности с аппаратной платформой (например, Arduino Uno), от напряжения 3.3 вольта. Первым делом, к модулю необходимо припаять штырьки, идущие в комплекте, и соединить его с ардуино кабелями DuPont, по следующей схеме.

    По завершению соединения контактов, устанавливаем официальное программное обеспечение arduino и подключаем платформу к компьютеру через micro-USB. В текстовый редактор программы, помещаем нижеприведенный код и кликаем по кнопке загрузки. Когда данные будут преданы, на мониторе появиться окно с числовыми значениями, обозначающими расстояния от датчика до ближайшей поверхности, на которую он направлен.

    При необходимости, собранный мини-дальномер, можно подключить к автономному источнику питания (аккумулятору или батарейному блоку). Для отображения результатов измерения, устройство должно соединяться с компьютером. При желании и более глубоких познаниях, его можно подключить к компактному дисплею, превратив в полностью портативный прибор.

    Малый диапазон измерений и постоянной контакт с персональным компьютером, значительно сокращают область применения подобного модуля. Если самостоятельно собрать беспроводной дальномер, рекомендуем обратить внимание на ультрозвуковые датчики. В отдельной статье (ссылка), мы объяснили процесс сборки измерителя, основанного на этом принципе.

    Источник: instrumentoria.ru

    Дальномер своими руками

    Предлагаю вашему вниманию перевод статьи Edward J. Ramaley «An Interesting Distance Meter», опубликованной в журнале «American Photography» за февраль 1939 г. В статье рассказывается о том, как из куска картона можно изготовить оригинальный оптический дальномер. Разумеется, в наши дни большинство фотокамер снабжены не то что дальномером, а полноценным автофокусом, что сильно снижает практическое значение описанного в статье примитивного устройства. Тем не менее, самодельный прибор остаётся презанятной игрушкой, с широким развлекательно-образовательным потенциалом и позволяет немного по-новому взглянуть на работу собственных глаз.

    Стиль изложения может показаться местами несколько путанным, но таков он и в оригинале – я старался переводить по возможности близко к тексту.

    Любопытный дальномер

    Назначение дальномера в фотографии состоит в том, чтобы дать фотографу возможность сфокусировать объектив на предмете, не прибегая к измерению разделяющего их расстояния при помощи линейки или рулетки. Фокусировка осуществляется путём изменения расстояния между объективом и изображением в соответствии с расстоянием от объектива до предмета. Тщательная фокусировка особенно необходима, когда диаметр отверстия объектива достаточно велик по сравнению с его фокусным расстоянием. В целом, любой объектив, используемый на пределе своей светосилы, должен быть крайне аккуратно сфокусирован при съёмке близких предметов.

    Оптический дальномер собирает свет через две приёмные системы, которые сопряжены таким образом, чтобы два сформированных ими изображения могли быть совмещены в одно. Надлежащая регулировка данного устройства может быть привязана к установке указателя на шкале, либо напрямую к фокусировке фотообъектива. Исходя из этого, может показаться логичным использовать непосредственно нашу собственную пару глаз в качестве оптического дальномера, что может быть реализовано несколькими способами. Один из них заключается в использовании индивидуально откалиброванной шкалы, удерживаемой на расстоянии вытянутой руки и наблюдаемой для измерения конвергенции глаз, смотрящих на объект.

    Калибровка дальномера

    Из картона вырезается треугольник с основанием три дюйма и высотой восемь дюймов. От окна или другого источника света откладывается наименьшая дистанция, указанная на фокусировочной шкале вашей камеры, и измеряющий становится на данную точку лицом к свету. Треугольник нужно держать напротив окна перед глазами на расстоянии вытянутой руки, используя естественное мышечное усилие, которое могло бы быть воспроизведено по желанию. Сфокусировав глаза на окне, вы убедитесь, что треугольник кажется сдвоенным, поскольку каждый глаз смотрит на него со своей собственной точки зрения. Продолжая удерживать фокус на окне, можно приложить прямую линейку поперёк треугольника, параллельно его основанию, так, чтобы она пересекала края каждого из двух мнимых треугольников в точке их взаимного пересечения. Наконец по линейке проводится линия. Этим завершается калибровка для данной дистанции.

    Полная фокусировочная шкала вашей камеры наносится на картонный треугольник точно таким же способом: отступая от окна на соответствующее расстояние, определяют, где пересекаются два мнимых треугольника и проводят горизонтальную линию через это пересечение. Точность дальномера убывает с увеличением дистанции, но точно так же убывает и необходимость в критическом фокусе. Прилагающиеся рисунки показывают, как выглядит завершённый дальномер и каким он кажется, когда глаза сфокусированы на точке за ним.

    Рис. 1 Дальномер (для глаз и руки автора). Рис. 2 Вид дальномера, когда глаза сфокусированы на предмете за ним.

    Как пользоваться дальномером

    При практическом использовании шкала удерживается вертикально на расстоянии вытянутой руки, в то время как глаза сфокусированы на значимой части сцены. Ноготь большого пальца скользит вверх по шкале до видимого пересечения двух треугольников, после чего взгляд можно перевести на треугольник, чтобы увидеть, какую линию отмечает ноготь, и сфокусировать камеру в соответствии с полученным значением. Казалось бы, ничего не может быть проще, однако существуют некоторые досадные помехи, о которых нельзя забывать.

    Наши глаза обманывают нас. Иногда нам кажется, что мы смотрим точно на объект, но на самом деле наши глаза сфокусированы на точке в воздухе. Средство от этого – сделать несколько считываний достаточно быстро, не давая глазам времени уставать или колебаться. Повторяйте до получения согласующихся результатов. Также следует помнить, что глазной зрачок это не точка, и его размер при ярком освещении, не таков, как при тусклом. Вследствие этого, на дальнем конце шкалы возникает определённый недостаток точности, и при чтении со шкалы приходится использовать приблизительно ту же яркость, что и при калибровке. Этот эффект уменьшается, если производить калибровку при умеренно ярком освещении, а непосредственно перед считыванием посмотреть на свет такой же интенсивности.

    Математическое отношение и обоснование для данного прибора показаны на рис. 3, и, как можно увидеть, расстояние между глазами весьма существенно для больших расстояний. Смысл в том, что если шкала откалибрована в светлой комнате и используется также в светлой комнате, расстояние между глазами не меняется. Меж тем, в тёмных местах глазной зрачок расширяется, преувеличивая, таким образом, одни значения и преуменьшая другие.

    Другой источник нестабильности, а именно трудность удерживания шкалы всегда на одном и том же расстоянии, очень легко преодолевается посредством очень небольшой практики, использованием естественного положения и комфортного мышечного усилия. Погрешности в удерживании треугольника особенно значимы на ближних дистанциях.

    Это устройство не приспособлено для коммерческого производства, поскольку оно должно соответствовать определённой паре глаз и конкретной руке. Оно ничего не стоит и может быть изготовлено за полчаса, но при использовании с должным вниманием, оно превращает пару зорких глаз в отличный дальномер, который не требует себе оправдания. Продолжительное использование этого прибора в процессе фотографирования играющих детей с близкого расстояния и при открытой диафрагме позволило получить множество вполне удовлетворительных негативов и продемонстрировало полезность устройства.

    Рис.3 Кривые, показывающие зависимость длины меток на шкале от расстояния до объекта при длине руки 27 дюймов и различных расстояниях между глазами.

    CD – длина линии на шкале в дюймах.
    BE – расстояние от глаз до объекта в футах.
    AB – расстояние между глазами в дюймах.

    Послесловие переводчика

    Нельзя не отдать должное изобретательности автора, хотя литературная сторона статьи, конечно, оставляет желать.

    Мне не вполне ясно, каким образом изменение размера зрачка может влиять на расстояние между зрачками. Очевидно, автор подразумевает не расстояние между центрами зрачков, а скорее расстояние между их медиальными краями. По-моему это не совсем правильно. В конце концов, оптическая ось глаза проходит именно через центр зрачка, а потому для наших целей важно именно расстояние между центрами зрачков, которое не зависит от их диаметра. Правда, при расширении зрачка (мидриазе) происходит уменьшение глубины резко изображаемого пространства, в результате чего объекты не в фокусе (в том числе сдвоенный треугольник дальномера) будут выглядеть несколько более размытыми. Это немного снижает точность измерения, но не настолько, чтобы этому факту стоило уделять особое внимание.

    Рис.4 Примерно так выглядит метрический дальномер.

    Прецезионность калибровки дальномера эмпирическим путём, т.е. буквально на глаз, также вызывает у меня определённые сомнения. Слишком уж неточен метод измерения (особенно для дальних дистанций), чтобы применять его при разметке эталонной шкалы. На мой взгляд, расположение горизонтальных меток на шкале дальномера лучше рассчитать. Я даже придумал алгоритм, который способен облегчить эту задачу. Всё что вам нужно, это попросить кого-нибудь измерить расстояние между центрами ваших зрачков (глаза при этом должны смотреть вдаль), а также расстояние от глаз до шкалы дальномера, удерживаемого в вытянутой руке, после чего подставить полученные цифры в соответствующие ячейки формы и нажать на кнопку «Построить таблицу». Для каждой дистанции вы получите высоту соответствующей горизонтальной метки, считая от снования треугольника, а также её длину (отрезок CD на рисунке 3). Все величины, само собой разумеется, метрические.

    Расчёт шкалы дальномера

    Располагая этими данными, вы без большого труда сможете разметить собственный дальномер.

    Для измерения длины руки можно воспользоваться рулеткой, а для определения межзрачкового расстояния – фороптером или, на худой конец, обычной линейкой. Прибегать к помощи разметочного циркуля категорически нежелательно.

    Спасибо за внимание!

    Post scriptum

    Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект, внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

    Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

    Источник: vasili-photo.com

    Лазерный дальномер из web камеры

    В продаже, есть большое количество, дешёвых, датчиков – дальномеров, в их числе ультразвуковые и инфракрасные. Все эти устройства работают хорошо, но из – за значительного веса, не подходят для летающих роботов. Миниатюрный робот вертолет, например, может нести около 100г полезной нагрузки. Это даёт возможность использовать, для поиска препятствий и предотвращения столкновений с ними, машинное зрение, используя веб-камеры (или другие миниатюрные, беспроводные камеры с подключением к компьютеру через USB). А еще лучше, установить две камеры, что обеспечит роботу, стерео зрение, таким образом, благодаря информации о глубине изображения, улучшится обход препятствий. Недостатком этой идеи, является, добавление веса второй камеры.

    В этой статье описывается, как маленькая лазерная указка, вместе с одной web камерой, может обеспечить моно машинное зрение, с большим диапазоном информации.

    Этот проект основан на статье найденной здесь.

    Принцип работы

    Смотрите рисунок ниже. Лазерная точка проектируется на возможное препятствие, лежащие в поле зрения камеры, расстояние до этого препятствия может быть легко вычислено. Математика здесь очень простая, обработку данных лучше всего производить в компьютерных приложениях.

    Итак, вот как это работает. Лазерный луч проецируется на объект в поле зрения камеры. Этот луч должен быть идеально параллелен оптической оси камеры. Лазерная точка захватывается вместе с остальной сценой. Простой алгоритм ищет на изображении яркие пиксели. Предполагая, что точка лазера является яркой на фоне более тёмной обстановки (я использовал обычную лазерную указку купленную в магазине за доллар), изначально положение точки в кадре не известно. Затем нам нужно рассчитать дальность до объекта, основываясь на том, где вдоль оси Y находится лазерная точка, чем ближе она к центру изображения, тем дальше находится объект.

    Как мы видим из рисунка выше, расстояние (D) может быть рассчитано по формуле:

    Конечно, для решения этого уравнения, вы должны знать, h- фиксированное расстояние между лазерной указкой и камерой. Знаменатель высчитывается так:

    Соединив два предыдущих уравнения, мы получим:

    Итак, количество пикселей от центра плоскости изображения до лазерной точки может быть просто рассчитано с картинки. А как насчет других параметров в этом уравнении? Для их получения мы должны выполнить калибровку.

    Для калибровки системы, мы будем собирать серию измерений, где нам известно, дальность до цели, а также количество пикселей центра изображения до точки лазера. Эти данные записываем в таблицу ниже:

    Источник: cxem.net

    Ссылка на основную публикацию
    Adblock
    detector