Температура плавления как обозначается

Температура плавления как обозначается

Почему твердое становится жидким?

Нагревание твердого тела приводит к увеличению кинетической энергии атомов и молекул, которые при нормальной температуре находятся четко в узлах кристаллической решетки, что и позволяет телу сохранять постоянные форму и размеры. При достижении некоторых критических значений скоростей атомы и молекулы начинают покидать свои места, происходит разрыв связей, тело начинает терять свою форму — становится жидким. Процесс плавление происходит не резким скачком, а постепенно, так, что некоторое время твердая и жидкая компоненты (фазы) находятся в равновесии. Плавление относится к эндотермическим процессам, то есть к таким которые происходят с поглощением теплоты. Противоположный процесс, когда жидкость затвердевает называется кристаллизацией.

Рис. 1. Переход твердого, кристаллического, состояния вещества в жидкую фазу.

Было обнаружено, что до окончания процесса плавления температура не изменяется, хотя тепло все время поступает. Никакого противоречия здесь нет, так как поступающая энергия в этот период времени уходит на разрыв кристаллических связей решетки. После разрушения всех связей приток тепла будет повышать кинетическую энергию молекул, а следовательно, температура начнет расти.

Рис. 2. График зависимости температуры тела от времени нагрева.

Определение удельной теплоты плавления

Удельной теплотой плавления (обозначение — греческая буква “лямбда” – λ ), называется физическая величина равная количеству тепла (в джоулях), которое необходимо передать твердому телу массой 1 кг, чтобы полностью перевести его в жидкую фазу. Формула удельной теплоты плавления выглядит так:

m — масса плавящегося вещества;

Q — количество тепла, переданное веществу при плавлении.

Значения для разных веществ определяют экспериментально.

Зная λ, можно вычислить количество тепла, которое необходимо сообщить телу массой m для его полного расплавления:

В каких единицах измеряется удельная теплота плавления

Удельная теплота плавления в СИ (Международная система ) измеряется в джоулях на килограмм, Дж/кг. Для некоторых задач применяется внесистемная единица измерения – килокалория на килограмм, ккал/кг. Напомним, что 1 ккал = 4,1868 Дж.

Удельная теплота плавления некоторых веществ

Информацию о значениях удельной теплоты для конкретного вещества можно найти в книжных справочниках или в электронных версиях на интернет-ресурсах. Обычно они приводятся в виде таблицы:

Источник: obrazovaka.ru

Удельная теплота плавления — определение, формула и обозначение

Общая информация

Правильное понимание удельного значения теплоты плавления невозможно без изучения ключевых особенностей самого процесса расплавки. И при плавлении, и при кристаллизации какого-либо вещества его внутренняя энергия изменяется. При первом процессе она возрастает, так как он неизменно сопровождается нагреванием — главным условием для увеличения энергии. Температура же при расплавке остается неизменной. В определенном смысле это парадоксально, ведь внутренняя энергия может характеризоваться температурой.

Однако увеличению энергии при неизменной температуре существует весьма простое и логичное объяснение. Во время процесса расплавки разрушается пространственная решетка кристаллического тела, на это уходит вся энергия. Разрушение кристаллической решетки требует расходования определенного количества энергии со стороны какого-либо внешнего источника. Как следствие, в ходе процесса расплавки происходит увеличение внутренней энергии тела.

В процессе отвердевания тела или, иначе говоря, кристаллизации, напротив, происходит уменьшение его внутренней энергии, так как оно отдает тепло телам, которые его окружают. Отвердевание (кристаллизация) — это обратный процесс по отношению к расплавке. Молекулы вещества образуют общую (единую) систему, и в ходе этого объединения отдаваемая составляющими вещества избыточная энергия поглощается внешней средой.

Основные сведения о теплоте плавления

По закону сохранения энергии тело поглощает в ходе плавления и отдает во время отвердевания (при необходимой для каждого из этих процессов температуре) равное количество тепла.

Теплотой плавления называют количество теплоты, которое необходимо для того, чтобы физическое тело при температуре плавления перешло в жидкое состояние из твердого. Это тепловое явление — частный случай фазового перехода в термодинамике.

На теплоту расплавки влияют масса плавящегося вещества, а также свойства, которыми оно обладает и которые для него характерны. Эта связь между теплотой расплавки физического тела и родом вещества, выражающаяся через зависимость первого от второго, измеряется удельной величиной.

Для плавления вещества требуется такое же количество тепла, которое выделяется при кристаллизации, поэтому определение удельного значения теплоты существует в двух равнозначных понятиях — для плавления и для кристаллизации. У этой величины есть и альтернативное наименование — энтальпия плавления.

Особенности измерения

Экспериментальным путем ученые-физики установили, что для перевода одного и того же вещества в жидкое из твердого состояния требуется разное количество теплоты. Затем исследователями-экспериментаторами было принято решение сравнить эти показатели при одинаковой массе вещества. Так появилось понятие удельной величины.

Согласно ее упрощенному определению, она показывает соотношение теплоты плавления тела из определенного вещества и его массы. Этот показатель считается главной характеристикой как для плавления, так и для кристаллизации.

Единицей измерения этой величины, согласно Международной системе единиц, считается Дж/кг (джоуль на килограмм). Обозначается удельный показатель буквой лямбда (реже встречается прочтение как ламбда) из греческого алфавита (аналог кириллической буквы «л»).

Читать еще:  Какой фирмы уровень выбрать

Находят удельную теплоту плавления по формуле: лямбда = Q/m, где Q — это обозначение количества теплоты, которое вещество получило при плавлении или выделило в процессе кристаллизации, а m — масса вещества (плавящегося или кристаллизующегося). Отсутствие температурного показателя в размерности обусловлено тем, что температура не меняется ни при плавлении, ни при кристаллизации.

Удельная величина при расплавке всегда положительна, а при кристаллизации — отрицательна. Исключение из этого правила существует (или, вернее, известно науке) только единственное — это химический элемент системы Менделеева под названием гелий, находящийся под высоким давлением. Он при расплавке отрицателен.

Чтобы перевести вещество в размере одного килограмма из твердого состояния в жидкое, нужно нагреть его до температуры плавления и подвести к нему теплоту в количестве, равном удельному показателю. В процессе кристаллизации одного килограмма вещества тепло выделяется ровно в том же количестве.

Для нахождения количества теплоты, необходимого для расплавки или кристаллизации вещества при соответствующих температурах, нужно удельную величину умножить на массу вещества. Для кристаллизующихся тел этот показатель будет со знаком минус, то есть отрицательным. Это связано с тем, что в процессе отвердевания все тепло теряется — выделяется не сохраняясь.

Сравнительная таблица

Таблица с удельной теплотой плавления некоторых веществ и химических элементов (вещества в таблице расположены не в алфавитном порядке, а по уменьшению их удельного показателя):

Название вещества или элемента Удельный показатель теплоты плавления в кДж/кг
Алюминий 390
Лед 330
Железо 277
Медь 213
Нафталин 151
Парафин 150
Эфир 113
Цинк 112
Серебро 105
Платина 101
Серый чугун 100
Сталь 83
Золото 66
Олово 61
Свинец 25
Белый чугун 14
Ртуть 12

Удельные величины для этих веществ считаются табличными (постоянными и известными) значениями, поэтому производить расчеты для их поиска нет никакой необходимости.

Родственные величины

Так называемые удельные показатели существуют для характеристики не только плавления и кристаллизации. В физической науке помимо этих процессов удельными величинами теплоты характеризуются:

  • парообразование;
  • конденсация;
  • теплоемкость.

Удельный показатель теплоты парообразования и конденсации отображает объем теплоты, необходимый для обращения единицы массы жидкости в пар и наоборот. Формула этой величины: Q/m. Таким образом, по сути, это то же самое, что и энтальпия расплавки и кристаллизации.

Что касается удельной теплоемкости, то это показатель соотношения теплоемкости и массы вещества. Он равен объему теплоты, передача которого единичной массе вещества необходима для изменения его температуры на один градус.

Тематические задания

Изучение тепловых явлений и их особенностей, к числу которых относится и удельная теплота, входит в школьную программу по физике для старших классов. Для проверки усвоения пройденного материала используются тематические задачи.

Задания на нахождение удельной теплоты парообразования помимо обычных текстовых условий в большинстве случаев сопровождаются графиками, отображающими температурные изменения, которые происходили с веществом по мере поглощения им теплоты.

Но графические задачи — не самые интересные. В число наиболее занимательных заданий входят такие:

  1. Кусок льда, размещавшийся в температуре -90 градусов Цельсия, начали нагревать посредством подведения к нему тепловой мощности постоянного типа. По прошествии 63 секунд от начала нагревания лед достиг температуры, необходимой для плавления. Требуется найти время в секундах, которое займет процесс плавления льда от момента его достижения нужного нагрева при условии, что потери теплоты нет. Ответ: 110 секунд.
  2. Кусок свинца, пребывавший в температуре +27,5 градуса Цельсия, путем подведения к нему постоянной тепловой мощности начали нагревать. Спустя 39 секунд после начала нагревания температура свинца достигла уровня плавления (+327,5 градуса Цельсия). Нужно определить продолжительность процесса плавления свинца в секундах от этого момента, с учетом отсутствия тепловых потерь. Ответ: 25 секунд.

Сравнение ответов этих задач позволяет оценить разницу между удельными величинами плавления льда и свинца. У первого она очень большая, а у второго, наоборот, маленькая. Это неудивительно — количество теплоты, нужное для плавления, напрямую зависит от свойств и характеристик вещества, в частности — от энергии связей, соединяющих частицы этого вещества между собой.

Роль большой удельной величины, которой обладает лед, неоценима как для природы, так и для человечества. Если бы этот показатель был меньше, то по весне все льды и снега растаяли, что обернулось бы ужасными последствиями. Потоки воды, образовавшиеся в результате такого таяния, смыли бы все на своем пути.

Читать еще:  Беспроводные звонки как выбрать

К счастью, ледяные и снежные массы не способны растаять за несколько мгновений. Физические свойства этих веществ лишний раз доказывают, что природа — гениальный и неподражаемый творец.

Источник: nauka.club

Удельная теплота плавления

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Обозначается удельная теплота плавления (греческая буква, читается как «лямбда» или «ламбда»).

Единицы измерения: . В данном случае в размерности отсутствует температура, так как при плавлении (кристаллизации) температура не меняется.

3. Количество теплоты, необходимое для плавления вещества

Для вычисления количества теплоты, необходимого для плавления вещества, используется формула:

, где:

– количество теплоты (Дж);

– масса вещества.

Когда тело кристаллизуется, пишется со знаком «-», так как тепло выделяется.

4. Вещества и их удельная теплота плавления

В качестве примера можно привести удельную теплоту плавления льда:

. Или удельную теплоту плавления железа:

.

То, что удельная теплота плавления льда получилась больше удельной теплоты плавления железа, не должно удивлять. Количество теплоты, которое необходимо тому или иному веществу для плавления, зависит от характеристик вещества, в частности, от энергии связей между частицами данного вещества.

На этом уроке мы рассмотрели понятие удельной теплоты плавления.

На следующем уроке мы научимся решать задачи на нагревание и плавление кристаллических тел.

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
  2. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Физика, механика и т. п. (Источник).
  2. Классная физика (Источник).
  3. Интернет-портал Kaf-fiz-1586.narod.ru (Источник).

Домашнее задание

  1. П. 15, упр. 8 (1–5), вопросы 1–6. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  2. Можно ли в алюминиевом сосуде расплавить свинец? Серебро?
  3. Почему медные провода легче спаять, чем соединить с помощью сварки?
  4. Какую энергию необходимо затратить, чтобы расплавить кусок свинца массой Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

    Источник: interneturok.ru

    Температура плавления как обозначается

    Обозначения физических величин

    Механические величины:

    Сила, сила тяжести

    Коэффициент жесткости (жесткость)

    Коэффициент запаса прочности

    Коэффициент полезного действия

    Коэффициент трения качения

    Коэффициент трения скольжения

    Ускорение свободного падения

    Акустические величины:

    Тепловые величины и величины молекулярной физики:

    Температура по шкале Цельсия

    Газовая постоянная (молярная)

    Температурный коэффициент линейного расширения

    Коэффициент полезного действия

    Температурный коэффициент объемного расширения

    Относительная молекулярная масса

    Удельная теплота парообразования

    Постоянная (число) Авогадро

    Удельная теплота плавления

    Удельная теплота сгорания топлива (сокр: теплота сгорания топлива)

    Постоянная (число) Лошмидта

    Электрические и магнитные величины:

    Температурный коэффициент электрического сопротивления

    Диэлектрическая проницаемость вакуума (электрическая постоянная)

    Удельная плотность энергии магнитного поля

    Удельная плотность энергии электрического поля

    Читать еще:  Как прозвонить провода в авто

    Удельная электрическая проводимость

    Удельное электрическое сопротивление

    Частота электрического тока

    Магнитная проницаемость вакуума (магнитная постоянная)

    Источник: raal100.narod.ru

    Плотность, температура плавления и кипения простых веществ

    В таблице приводятся основные физические свойства простых веществ: плотность при температуре 20°С (в случае, если плотность измерена при другой температуре, последняя указана в скобках), температура плавления и температура кипения веществ в градусах Цельсия.

    Указаны плотность и температуры плавления и кипения следующих простых веществ: азот N2, актиний Ac, алюминий Al, америций Am, аргон Ar, астат At, барий Ba, бериллий Be, бор B, бром Br, ванадий V, висмут Bi, водород H2, вольфрам W, гадолиний Gd, галлий Ga, гафний Hf, гелий He, германий Ge, гольмий Ho, диспрозий Dy, европий Eu, железо Fe, золото Au, индий In, йод (иод) J, иридий Ir, иттербий Yb, иттрий Y, кадмий Cd, калий K, кальций Ca, кислород O2, озон O3, кобальт Co, кремний Si, криптон Kr, ксенон Xe, кюрий Cm, лантан La, литий Li, лютеций Lu, магний Mg, марганец Mn, медь Cu, молибден Mo, мышьяк As, натрий Na, неодим Nd, неон Ne, нептуний Np, никель Ni, ниобий Nb, олово Sn, осмий Os, палладий Pd, платина Pt, плутоний Pu, полоний Po, празеодим Pr, прометий Pm, протактиний Pa, радий Ra, радон Rn, рений Re, родий Rh, ртуть Hg, рубидий Rb, рутений Ru, самарий Sm, свинец Pb, селен Se, сера S, серебро Ag, скандий Sc, стронций Sr, сурьма Sb, таллий Tl, тантал Ta, теллур Te, тербий Tb, технеций Tc, титан Ti, торий Th, тулий Tu, углерод C (алмаз, графит), уран U, фосфор P (белый, красный), франций Fr, фтор F, хлор Cl, хром Cr, цезий Cs, церий Ce, цинк Zn, цирконий Zr, эрбий Er.

    Следует отметить, что плотность веществ в таблице выражена в размерности кг/м 3 . В таблице можно выделить вещества (химические элементы) с минимальной и максимальной плотностью. Наименьшей плотностью из химических элементов обладают газы — например, плотность водорода равна всего 0,08987 кг/м 3 — это самый легкий газ на планете. Из тяжелых элементов высокой плотностью отличаются вольфрам, уран, нептуний, осмий и другие металлы.

    Цифры в скобках означают, что вещество при данной температуре разлагается. Сокращения: г. — газ, ж. — жидкость, тв. — твердое вещество, возг. — возгоняется, ромб. — ромбическая структура.

    По данным таблицы можно выделить вещества, обладающие минимальной и максимальной температурой плавления и кипения. Самую низкую температуру плавления имеет химический элемент гелий — его температура плавления равна минус 272,2 °С. Гелий также обладает и самой низкой температурой кипения.

    Самую высокую температуру плавления среди простых веществ имеет такой химический элемент, как углерод в виде графита. Он начинает плавиться при температуре 3600°С. Другая модификация углерода — алмаз также относится к тугоплавким веществам с температурой плавления 3500°С.

    Самую высокую температуру кипения имеет элемент кадмий, он кипит при температуре не ниже 7670°С, хотя начинает плавиться всего лишь при 321°С.

    Атомная масса и плотность простых веществ

    В таблице приведена атомная масса и плотность следующих химических элементов: азот ,актиний, алюминий, америций, аргон, астат, барий, бериллий, берклий, бор, бром, ванадий, висмут, водород, вольфрам, гадолиний, галлий, гафний, гелий, германий, гольмий, диспрозий, европий, железо, золото, индий, йод, иридий, иттербий, иттрий, кадмий, калий, калифорний, кальций, кислород, кобальт, кремний, криптон, ксенон, кюрий, лантан, литий, лютеций, магний, марганец, медь, менделевий, молибден, мышьяк, натрий, неодим, неон, нептуний, никель, ниобий, олово, осмий, палладий, платина, плутоний, полоний, празеодим, прометий, протактиний, радий, радон, рений, родий, ртуть, рубидий, рутений, самарий, свинец, селен, сера, серебро, скандий, стронций, сурьма, таллий, тантал, теллур, тербий, технеций, титан, торий, тулий, углерод (графит, алмаз), уран, фермий, фосфор, франций, фтор, хлор, хром, цезий, церий, цинк, цирконий, эйнштейний, эрбий.

    Указанные значения плотности соответствуют плотности веществ при температуре 20°С и атмосферном давлении, за исключением тех случаев, когда в скобках указана другая температура.

    Плотность элементов дана в размерности тонна на кубометр. Например, плотность жидкого азота при температуре -195,8°С равна 0,808 т/м 3 или 808 кг/м 3 ; плотность хлора в газообразном состоянии равна 3,214 кг/м 3 , жидкого — 1557 кг/м 3 . Значения плотности веществ приведены для их естественного молекулярного и агрегатного состояний при указанной температуре.

    Источники:
    1. Писаренко В.В. Справочник лаборанта-химика. Справ. пособие для проф.-техн. учебн. заведений. М., «Высшая школа», 1970. — 192 стр. с илл.
    2. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.

    Источник: thermalinfo.ru

Ссылка на основную публикацию
Adblock
detector