При какой температуре происходит уз сварка

При какой температуре происходит уз сварка

На данный момент существует около сотни самых разнообразных способов сварки металлов. У каждого из них есть свои достоинства и недостатки, особенности и сферы применения. Какие-то методы незаменимы на опасных объектах, а какие-то становятся основополагающими в практике домашних мастеров. Но существуют и такие способы сварки, о которых мы мало что слышим в силу узкого применения.

Один из таких способов — сварка ультразвуком. Ультразвуковая сварка нечасто на слуху, но она все же широко применяется при сварке микроэлектроники, проволоки, листового металла и прочих тонких или просто маленьких изделий. В этой статье мы подробно объясним, что такое ультразвуковая сварка и как работает данный метод соединения металлов.

Общая информация

Ультразвуковая сварка металлов — метод сварки, в основе которого лежит применение ультразвуковых колебательных волн. Широко применяется не только для сварки металлов, но и для соединения деталей из пластмассы, ткани, натуральной кожи. Также с помощью ультразвука вы сможете сварить стекло с металлом. Вы можете комбинировать ультразвуковую сварку с точечной, контурной или шовной сваркой.

Интересный факт: в конце 60-х годов прошлого века с помощью ультразвуковой сварки был собран автомобиль, изготовленный из пластмассы. Именно благодаря ультразвуковому оборудованию этот проект удалось успешно завершить.

Существуют даже специализированные приборы для ультразвуковой сварки. Например, большой популярностью пользуется ультразвуковая швейная машина для сварки полимеров (брезента или подобных изделий). Но про оборудование мы подробнее поговорим позже.

Технология

В работе применяется специальный ультразвуковой сварочный аппарат, который во включенном состоянии непрерывно генерирует ультразвуковые волны частотой от 18 до 180 кГц. При этом может выдавать мощность от 0,01 до 10 кВт. В итоге создаются высокочастотные колебания, которые генерируют тепло и в связке с высоким давлением сваривают детали. Дополнительно заготовка может нагреваться в месте сварки с помощью отдельного прибора, так соединение получается более качественным.

Ультразвуковая сварка металлов может выполняться с использованием самых разнообразных типов сварных соединений. Вы можете сварить две детали внахлест, раздавить кромки и сварить их, можете встык сварить круглую деталь с плоской, и так далее. Словом, возможности практически безграничны.

Достоинства и недостатки

У ультразвуковой сварки (как и у любого другого метода) есть достоинства и недостатки. Давайте рассмотрим их подробнее, чтобы вы могли понять, в каких целях стоит применять ультразвук, а в каких от этой идеи лучше отказаться.

Первое достоинство — отсутствие необходимости в тщательной подготовке металла под сварку. Единственное, что необходимо сделать — обезжирить поверхность. Все. Можно даже не удалять грязь или ржавчину. При других методах сварки подготовительный процесс отнимает много времени и сил, а вот с применением ультразвука эта проблема легко решается.

Второй плюс — местный нагрев. Металл нагревается только в том месте, где планируется сварное соединение. По этой причине исключены какие-либо деформации металла из-за избыточного нагрева. Это достоинство особенно заметно при сварке пластмассовых деталей.

Третий плюс — возможность варить даже в труднодоступных местах, при этом вся сварка производится очень быстро, ведь металл успевает нагреться менее чем за секунду. К тому же, вы без труда сварите очень тонкий металл. И говоря «тонкий» мы подразумеваем даже металлические листы толщиной не более 0,001 миллиметра. Впечатляет!

Но, поскольку наш материал объективен, мы расскажем и о недостатках. Учтите, что все они не так существенны.

Во-первых, в некоторых ситуациях все же приходится приобретать дорогие генераторы ультразвуковых волн, если бюджетные модели не справляются. Но, справедливости ради, случается это крайне редко. В нашей практике еще не было ни одного случая, когда бы недорогой ультразвуковой генератор не справился со своей работой.

Также иногда бывают ситуации, когда ультразвук не может сварить толстый металл. Эту проблему можно решить, если подбирать вогнутые детали. Они будут фокусировать ультразвук в зоне сварки и тем самым даже толстый металл быстро расплавится.

Оборудование

Раз уж мы дважды упомянули оборудование, остановимся подробнее на этой теме. Существует три типа аппаратов для ультразвуковой сварки:

  • Аппараты, выполняющие точечно-контурную сварку
  • Сварочники, выполняющие шовную или шовно-шаговую сварку
  • Мобильные (переносные) аппараты малой мощности, например, сварочные пистолеты.

При этом мощность аппарата может быть от 100 до 1500Вт, в зависимости от его цены, назначения и размеров.

На сварочных аппаратах, произведенных до конца 70-х, использовался магнитострикционный принцип генерации ультразвука. Но на данный момент такие аппараты не выпускаются, им на смену пришли установки, в которых ультразвук генерируется с помощью встроенного пьезоэлектрического преобразователя.

На данный момент такое оборудование производят многие страны Европы и мира, в том числе Россия. Качество отечественной продукции вполне приемлемо, особенно учитывая невысокую стоимость по сравнению с зарубежными конкурентами. Вообще производство ультразвуковых сварочных аппаратов началось еще в Советском союзе. Тогда такие аппараты в основном использовались для сварки микросхем. Сейчас же сфера применения стала куда шире.

Вместо заключения

Сварка ультразвуком незаменима при работе с маленькими и тонкими деталями, которые просто невозможно сварить вручную или с применением других технологий. Благодаря ультразвуку металл не деформируется и не растекается, а образует прочное соединение. Также сварка ультразвуком позволяет беспроблемно варить металлы, покрытые окисной пленкой. Например, алюминий, с которым у сварщиков обычно много проблем.

К тому же, оборудование для ультразвуковой сварки стоит не так уж дорого. Поэтому рекомендуем испробовать в своей практике этот метод соединения металлов. Если вы когда-либо выполняли ультразвуковую сварку своими руками, то расскажите об этом. Ваш опыт будет полезен для многих новичков. Желаем удачи в работе!

Источник: svarkaed.ru

Ультразвуковая сварка металлов. Схемы, технология и оборудование для сварки ультразвуком

Содержание

Понятие и определение ультразвуковой сварки

Ультразвуковая сварка (УЗС) — эти вид сварки давлением, который происходит под воздействием ультразвуковых колебаний (ГОСТ 2601, СЭВ 5277).

Неразъёмное соединение под воздействием ультразвуковых волн образуется в процессе сжатия свариваемых деталей, которое происходит при относительно небольшом усилии (порядка нескольких единиц ньютона, или даже десятых долей ньютона при соединении элементов микросхем и порядка 104Н при сварке толстых листом). Одновременно с приложенным усилием, на соединяемые детали воздействуют механические колебания с частотой 15-80 кГц.

Сущность ультразвуковой сварки

При УЗС металлов, необходимые условия для образования сварного соединения происходят под воздействие ультразвуковых волн, преображённых в механические колебания. Энергия вибрации формирует сложные растягивающие и сжимающие напряжения, а также напряжения среза.

Когда напряжения превысят предел упругости свариваемых материалов, на плоскости их контакта происходит пластическая деформация. Под воздействие ультразвука и пластической деформации, поверхностные оксидные плёнки разрушаются и удаляются с поверхности, после чего образуется сварное соединение.

При этом, повышение температуры в зоне сварки не оказывает существенного влияния на процесс сваривания. При ультразвуковой сварке структура и свойства свариваемых металлов изменяются незначительно.

Основные схемы процесса сварки ультразвуком

Ультразвуковая сварка выполняется на специальных установках, в которых встроен генератор электромагнитных волн высокой частоты. Также в установке имеется механическая колебательная система, аппаратура управления процессом сварки и привод, создающий давление на сварное соединение. Основные схемы установок для ультразвуковой сварки металлов представлены на рисунке:

Трансформирование электромагнитных волн в механические колебания и подача их в зону сварки осуществляется с помощью колебательной системы. Основным узлом колебательных систем (см. рисунок) является преобразователь (поз.1). Преобразователь производит механические колебания. При помощи волноводного звена (поз. 2) происходит передача энергии к сварочному наконечнику и увеличивается амплитуда колебаний, по сравнение с амплитудой исходных волн преобразователя. Кроме этого, преобразователь трансформирует сопротивление нагрузки и концентрирует энергию в заданной области сварного соединения (поз. 5).

При помощи акустической развязки (поз. 3) от корпуса машины, почти вся энергия механических колебаний преобразовывается и концентрируется на участке контакта. Сварочный наконечник (поз. 4) является проводным волноводным звеном между нагрузкой и колебательной системой. При помощи него задаётся необходимая площадь и объём непосредственного источника ультразвуковых колебаний в зоне сварки.

Преимущества ультразвуковой сварки

Большой мировой опыт в применении ультразвуковой сварки позволяет выделить ряд преимуществ, характерных для этого процесса. Выделим основные из них:

1. Процесс сварки происходит при твёрдом состоянии металла без сильного нагрева сварного соединения. Благодаря этому, появляется возможность сваривания химически активных металлов, а также разнородных материалов, которые склонны к образованию хрупких соединений в результате нагрева.

2. При помощи УЗС возможно получить сварные соединения металлов, которые сложно получить другими способами сварки в силу экономических и технологических ограничений, например, сварку меди или сварку алюминия.

3. Данный вид сварки позволяет сваривать между собой тонкие и сверхтонкие элементы (сварка пакетов из фольги), а также приваривать их к элементам большой толщины. При этом, толщина последних практически не ограничена.

4. При УЗС металлов нет высоких требований к чистоте свариваемых поверхностей, что во многих случаях позволяет производить сварку поверхностей, с имеющимися на них оксидными плёнками, а также сварку тех деталей, на соединяемых поверхностях которых имеются различные изоляционные плёнки.

5. Поверхности соединяемых деталей в зоне стыка не подвергаются сильной деформации из-за малой величины сварочного усилия.

Читать еще:  Как быстро убрать супер клей с пальцев

6. Установки для УЗС металлов имеют несложную конструкцию и обладают небольшой мощностью.

7. Процесс ультразвуковой сварки можно легко автоматизировать.

8. Данный вид сварки очень выгоден в плане экологии и гигиены.

Технологические возможности ультразвуковой сварки

При помощи УЗС можно сваривать различные части изделий толщиной 0,005-3,0мм и диаметром 0,01-0,5мм. При этом, если необходимо приварить тонкий лист или фольгу к детали, то толщина последней практически не ограничена. Разница в толщине свариваемых частей может достигать в сто раз! На рисунке ниже представлены наиболее характерные соединения для сварки ультразвуком:

Таблица свариваемости материалов при сварке ультразвуком

С помощью ультразвуковой сварки можно сваривать как однородные металлы и их сплавы, так и разнородные и даже с некоторыми неметаллическими материалами. Свариваемость того или иного материала зависит от его твёрдости и кристаллической решётки. Чем выше твёрдость, тем хуже свариваемость стали. На рисунке ниже дана таблица свариваемости некоторых материалов при УЗС:

Технология ультразвуковой сварки металлов

Технологический процесс сварки металлов ультразвуком представляет собой ряд последовательно выполняемых операций, главными из которых можно выделить: подготовка соединяемых деталей, их сборка, прихватка, сварка и правка. В каждом отдельном случае объём работ по каждой из операций может существенно различаться.

Подготовка свариваемых поверхностей

Результаты, полученные на практике, показывают, что влияние оксидных плёнок на сварных кромках почти не влияет на прочность сварного соединения при ультразвуковой сварке. Поэтому, можно получить качественное сварное соединение при УЗС даже без предварительной обработки свариваемых участков.

Но, результаты некоторых отдельных исследований говорят о том, что целесообразнее будет удалять оксидные плёнки с соединяемых поверхностей, т.к. они могут снизить качество сварного соединения, а в ряде случаев и вовсе технологический эффект не может быть достигнут. Для подготовки поверхностей под УЗС хорошо подходит обезжиривающая обработка.

Выбор режимов сварки

Главными показателями режима ультразвуковой сварки являются частота и амплитуда колебаний сварочного наконечника, величина усилия и продолжительность процесса.

Амплитуда является важнейшим параметром, от него зависит эффективность удаления оксидных плёнок, нагрев, а также зоны пластической деформации. Амплитуду назначают исходя из предела текучести и твёрдости свариваемых материалов, толщины свариваемых элементов и от того, очищались ли сварные кромки от оксидных плёнок, или нет. Чем выше твёрдость, предел текучести и толщина свариваемых материалов, тем выше должна быть амплитуда колебаний. В большинстве случаев, она находится в диапазоне 0,5-50мкм.

Величина сварочного усилия определяет эффективность передачи ультразвуковых волн и способствует возникновению пластической деформации в зоне сварки. Чем выше твёрдость, предел текучести и толщина свариваемых элементов, тем выше должно быть сварочное усилие. При этом усилие напрямую связано с величиной амплитуды колебаний и при увеличении амплитуды, усилие необходимо снижать. При соединении элементов приборов и микросхем усилие составляет от десятых долей до нескольких ньютонов, а при сваривании относительно толстых листов усилие может составлять до 10 000Н. Величина усилия в процессе сварки может оставаться постоянной или же изменяться по определённой программе.

Продолжительность процесса зависит от амплитуды колебаний, усилия сварки, толщины свариваемого металла и его физических свойств. Зависимость времени от амплитуды и свойств такая же, как и зависимость усилия сварки.

Видео: технология ультразвуковой сварки

Оборудование и установки для ультразвуковой сварки

Для ультразвуковой сварки существует много различных универсальных и специализированных установок, которые широко применяются при изготовлении большого количества изделий.

В настоящее время достаточно широко распространена ультразвуковая микросварка для сваривания элементов в микросхемах и полупроводниковых приборах. Отличительными особенностями установок для микросварки ультразвуком являются высокая производительность и степень автоматизации всего процесса, начиная со сборки и заканчивая сваркой.

Применение ультразвуковой сварки в промышленности

Вид сварки ультразвуком используют для сварки фольги, проволоки, тонких листов и других элементов. От других видов сварки его выгодно отличает возможность сваривания разнородных и термочувствительных материалов, ведь процесс может происходить без нагрева, или при минимальном нагреве.

Ультразвуковую сварку широко используют в таких областях промышленности, как производство микросхем, полупроводников, микроприборов, микроэлементов для электроники, чипов, конденсаторов, трансформаторов, мобильных телефонов, для изготовления многих элементов в различных видах домашней техники. Также этот вид сварки нашёл применение в оптических приборах и приборах точной механики, в изготовлении реакторов, вакуумных сушильных установок, соединении концов рулонов тонколистовых материалов, в автомобильной промышленности и многих других областях науки и техники.

Источник: taina-svarki.ru

Как происходит ультразвуковая сварка

Широкие массы общественности чаще всего сталкиваются с многочисленными видами услуг, связанных с ультразвуком в медицине, которые обозначаются популярнейшими тремя буквами – УЗИ, то есть ультразвуковыми исследованиями самых разных органов в самых разных режимах. Мы с вами имеем дело с другими тремя буквами: это УЗК – аббревиатурой, обозначающей ультразвуковые колебания.

Они используются в промышленности весьма широко и в течение многих лет. Более того, научно-технический прогресс не стоит на месте, технологии и оборудование совершенствуются, область применения расширяется. Если говорить о сварочном деле, то ультразвуковая сварка – дело далеко не новое, но чрезвычайно быстро меняющееся и развивающееся.

Все дело в оборудовании

Эта динамика развития делится на два направления:

  • Низкоэнергетические колебания, или волны малой интенсивности, которые с успехом применяются в областях измерений, сигнализации, дефектоскопии и т.д.
  • Высокоэнергетические колебания, или волны высокой интенсивности, которые великолепно используются в сварке металлов и пластмасс и процессах очистки деталей.

Вот в каких направлениях используется ультразвуковая сварка:

  • В качестве вспомогательного средства, влияющего на процесс кристаллизации в сварочной ванне для улучшения механических свойств сварочного шва. Это влияние заключается в удалении газов и измельчении структуры сварочного металлического шва.
  • В качестве энергетического ресурса в микроэлектронике и других областях, где требуется неразъединимое соединение тончайших металлических слоев фольги или чего-либо подобного. Такое соединение возможно благодаря разрушению пленок ультразвуковыми колебаниями у металлов с окисленной поверхностью.
  • Для снижения степени деформации и напряжения в процессе. Ультразвук стабилизирует структуру шва и, таким образом, минимизирует самопроизвольное деформирование, которое нередко возникает впоследствии.
  • Для контроля качества швов с помощью специальной дефектоскопии.
  • Соединение пластмасс – термопластических полимеров, где ультразвуковая сварка не имеет альтернативы.

Процесс ультразвуковой сварки

Суть процесса – действие на обе свариваемые поверхности механических колебаний высочайшей частоты в комбинации с умеренным сдавливанием. Механические колебания такой частоты образуются в результате магнитострикционного эффекта: некоторые металлические сплавы меняют свои размеры из-за действия переменного магнитного поля.

Никель и железнокобальтовые сплавы – лучшие ультразвуковые преобразователи, это хорошие магнитострикционные материалы. Изменение их размеров чрезвычайно мало, поэтому для концентрации энергии и увеличения амплитуды применяются специальные волноводы специфической суживающейся формы.

Эти волноводы имеют средний коэффициент усилия 5,0 с амплитудой примерно 20 – 30 мкм при условии холостого хода. А такой амплитуды колебаний с лихвой хватает для качественного соединения: по многим опытам экспериментальных ультразвуковых процессов даже колебания в 1,3 мкм дают вполне надежный сварочный шов.

Функция волноводов – передача энергии волнового колебания к наконечнику сварочного инструмента от преобразователя магнитострикционной природы. Магнитострикционный преобразователь считается главным компонентом оборудования для ультразвуковой сварки.

В него входят следующие технические компоненты:

  • волновод;
  • опора в виде маятника;
  • диафрагма;
  • подвод тока для преобразователя;
  • привод механического сжатия;
  • система водяного охлаждения в виде кожуха.

Сама же установка для УЗС состоит из следующих составных частей:

  • магнитострикционный преобразователь;
  • сам волновод;
  • ролик для сваривания;
  • токоподвод;
  • водоподвод для охлаждения;
  • прижимной ролик;
  • защитный кожух преобразователя;
  • механический привод вращения.

Ток высокой частоты поступает от ультразвукового генератора на обмотку магнитострикционного преобразователя. Волновод со специальным рабочим выступом усиливает и передает механические колебания к наконечнику сварочного инструмента.

Выступ на волноводе во время процесса принимает высокочастотные колебания, которые по своей природе являются механическими горизонтальными движениями высокой частоты.

Длительность сварочного процесса напрямую зависит от толщины и природы свариваемого металла. Если край металла тонкий, образование шва занимает буквально доли секунды.

Высокочастотные колебания наконечника сварочного инструмента имеют свойство поляризоваться в одной плоскости с поверхностью пластины сверху. Колебания передаются на пластины и опоры с нужными амплитудами с учетом того, что на всех точках передачи энергия колебаний гасится.

Сам процесс соединения начинается с момента соприкосновения микронеровностей поверхностей, которые соединяются, в результате чего происходит их деформация. Как только включаются ультразвуковые колебания, эти микронеровности дополнительно сдвигаются, появляются зоны схватывания.

Если с самого начала ультразвукового воздействия на соединяемых поверхностях возникает трение по сухому типу, разрушающее окисные пленки из жидкостей и газов, то впоследствии сухое трение превращается в чистое трение, которое образовывает и укрепляет зоны схватывания.

Дополнительному укреплению схватывания способствует характер колебаний: возвратно-поступательные движения при малой амплитуде.

В рабочей зоне при УЗС образуется тепло вследствие процесса трения и деформации на соединяемых поверхностях. Температура в рабочей зоне зависит от характеристик металла: его твердости, теплопроводности и теплоемкости.

Соблюдение режима технологии УЗС дает сварочный шов, равный по своей прочности основному металлу.

Источник: tutsvarka.ru

Принцип действия и преимущества ультразвуковой сварки

Сварка ультразвуком (УЗС), разработанная еще в середине 20 века, востребована и в веке 21-м для соединения металлов и термопластика. Элементы при соединении сдавливаются друг с другом и подвергаются волновому воздействию. На фоне иных способов, ультразвуковая сварка выгодно выделяется простотой применяемых аппаратов, низкими затратами труда и стоимостью.

Читать еще:  Как проверить есть ли ток в розетке

Принцип действия и классификация

Процесс протекает в три этапа:

  • нагревание элементов, взаимное проникновение материалов друг в друга в зоне контакта;
  • формирование связей на молекулярном уровне;
  • твердение и формирование шва.

Сварка ультразвуком по уровню автоматизации процесса разделяется на:

  1. Ручную. Все характеристики установки контролируются оператором, он же проводит пистолет для сварки по контуру соединения.
  2. Механизированную. Контроль параметров осуществляется оператором, элементы подаются на излучатель.
  3. Автоматическая. Используется в цехах промышленных предприятий, производится без использования рук человека.

По способу подачи энергии в зону сварки отличают одно- и двухсторонний метод.

В соответствии с характером передвижения волновода УЗС бывает:

  1. Импульсной. За единичное перемещение рабочая зона бомбардируется короткими импульсами.
  2. Непрерывной. Излучение воздействует не переставая, волновод передвигается с установленной скоростью вдоль элементов.

По характеру передачи энергии в область сваривания имеются такие режимы УЗС:

  • Контактный. Подразумевает равномерное распределение энергии в объеме элементов. Используется с целью сопряжения пленок и пластиковых изделий внахлест.
  • Передаточный. Колебания образуются одновременно во многих точках, волны проходят толщу элементов, освобождая энергию на участке. Применяется для создания тавровых швов и сопряжения жестких изделий из полимеров встык.

Таблица свариваемости материаловУльтразвуковая сварка применима для пластмасс и большинства однородных и разнородных металлов. Использование для определенного материала зависит от параметров его кристаллической решетки и твердости – чем она выше, тем ниже свариваемость металлического изделия.

Возможность сопряжения материалов посредством УЗС представлена в таблице.

Суть получения швов

Для соединения металлов ультразвуком требуется предварительный нагрев поверхности и приложение значительного сжимающего усилия, что усложняет конструкцию таких аппаратов. Схема ультразвукового оборудования для сварки полимерных материалов значительно проще.

Соединение осуществляется в следующей последовательности:

  • подключение оборудования, генерирующего ультразвук;
  • прохождение УЗ конвертора, трансформирование его в механические продольно направленные колебания;
  • передача от волновода свариваемым элементам колебательной энергии;
  • интенсивный нагрев поверхности на участке соприкосновения деталей и волновода;
  • возрастание текучести внешнего слоя элементов;
  • формирование связей под воздействием динамических и статических усилий.

Преимущества

Сварка пластмасс и металлов ультразвуком обладает такими преимуществами:

  • отсутствие необходимости в применении защитных газов, присадочных материалов;
  • не требуется механическая зачистка швов;
  • возможно соединение элементов любой формы;
  • экологическая безопасность, отсутствие вредности для человека;
  • высокая производительность;
  • эстетичность образованного шва.

Недостатки

УЗС также обладает и недостатками:

  • использование для заготовок с максимальными габаритами 25-30 см;
  • невозможность применения для элементов значительной толщины;
  • неэффективность при повышенной влажности заготовок.

Воздействие на материал деталей

Ультразвуковые волны за малый промежуток времени сообщают атомам свариваемых тел большое количество энергии, повышая тем самым амплитуду колебаний молекул в свариваемой области.

Происходит разрыв имеющихся и образование под воздействием давления новых связей – совместных с частицами другого элемента. Образуется надежное соединение, детали становятся единым целым.

Работа с металлическими деталями

Соединение металлических заготовок осуществляется под значительно меньшим температурным воздействием, чем при применении иных «горячих» способов сварки – газовой либо электродуговой. Эта особенность позволяет шире раскрыть возможности для надежного и быстрого сопряжения элементов, эксплуатационные свойства которых снижаются при перегреве. Помимо этого, УЗС позволяет сваривать пары металлов, не соединяемых или с трудом соединяемых иными способами – например, медь с алюминием, алюминий с никелем.

Прочность шва соответствует ГОСТ и составляет порядка 70% от аналогичного показателя исходного материла.

Преимущества и недостатки для пластиков

Сварка пластиков ультразвуком имеет такие преимущества:

  • обеспечение непроницаемости швов толстостенных деталей;
  • отсутствие излишнего перегрева заготовок;
  • отсутствие электромагнитных полей и излучений;
  • совмещение процесса с иными операциями;
  • незаметность и эстетичность сформированного шва;
  • отсутствие химикатов и присадок.

К недостаткам относятся:

  • низкая мощность излучателя требует подведения энергии с обеих сторон;
  • сложность проведения контроля качества выполнения работ;
  • параметры шва зависимы от стабильности характеристик и подбора типа установки.

Особенности у полимеров

Для сопряжения полимерных материалов используется специализированный ультразвуковой сварочный аппарат, главными частями которого являются:

  • рама для крепления деталей и узлов;
  • блок питания с кабелем для подключения к сети;
  • генератор УЗ-колебаний;
  • пресс;
  • преобразователь колебаний;
  • сварочная головка.

Используемое оборудование

Аппарат для УЗС изготовить «на коленке» невозможно, для его создания требуется определенный уровень знаний и навыков в сфере электроники и акустики. Помимо этого, также требуются высокоточные станки и мощный пресс для подачи требуемого давления.

Установки для УЗС разделяются на несколько групп:

Диапазон мощности находится в пределах 0,05-2 кВт, частота – от 20 до 22 кГц.

Основные рабочие узлы – генератор и магнитострикционный преобразователь колебаний в механические с сохранением частоты. Теплоотведение осуществляется посредством водяной охлаждающей системы.

Согласование совместной работы волновода и преобразователя производится волновым трансформатором, повышающим на выходе частоту колебаний.

Посредством волновода выполняется передача потока энергии к зоне сваривания. На его конце размещена сварочная головка, размеры которой подбираются по материалу и толщине заготовок, типу шва.

Рама служит базой для всех узлов и элементов. На ней закрепляются головки волновода и механизм, посредством которого производится смещение заготовок.

Подключение к сети осуществляется через питающий провод.

Для получения долговечного и прочного шва предварительно следует соблюдать параметры функционирования аппарата. Точная настройка оборудования для изделий выполняется в лаборатории с проведением испытаний шва на разрушение.

Основные параметры следующие:

  1. Амплитуда колебаний, определяющая срок процесса и мощность энергетического потока.
  2. Давление сжатия, от которого зависит прочность рубца.
  3. Частота генератора.
  4. Статическое давление.
  5. Скважность и длительность импульсов.

Выделение тепла

Образование тепла при УЗС происходит из-за пластических деформаций и трения между собой соединяемых заготовок. Температура нагрева не постоянна и зависит от твердости, теплоемкости и теплопроводимости элементов.

На процесс выделяющиеся излишки тепла оказывают незначительной влияние.

Возможности ультразвука

Применение УЗС позволяет эффективно сопрягать разнообразные материалы, значительно отличающиеся толщиной – от пары микрон до нескольких миллиметров. При этом форма заготовок практически не изменяется.

При устройстве точечных швов соединения могу выполняться на участках значительной площади. Шаг выбирается по материалу изделий и требуемой прочности шва. Для выполнения сплошных герметичных швов используются роликовые насадки к излучателю.

Пленки и листовые изделия сопрягаются внахлест, для стержневых элементов используется тавровый шов.

Сферы использования

Область использования УЗС определяется в соответствии с ее особенностями:

  • материал сопрягаемых заготовок должен быть пластичным;
  • толщина и размеры элементов невелики;
  • температура прогрева значительно ниже, чем при применении «горячих» методов сварки.

В связи с такими особенностями, УЗС широко распространена в следующих отраслях промышленности:

  • электронике;
  • приборостроении;
  • производстве изделий из пластика.

Также ультразвуковая сварка применяется и в иных сферах для присоединения мелких элементов к более крупным изделиям, например, зубов к пластиковым шестеренкам.

Ограничения

Главным ограничением применения УЗС является размер свариваемых элементов, составляющий 25-30 см. Это обусловлено небольшой мощностью генератора, а также рассеянностью и затуханием УЗ-колебаний в твердых телах.

Для прямого повышения амплитуды колебаний и выходной мощности оборудования потребуется неоправданное увеличение габаритов и подводимой мощности, что сделает применение метода экономически неэффективным.

Помимо этого, свариваемые заготовки должны обладать минимальной влажность – как поверхностной, так и объемной.

Технология для металлов

Техпроцесс УЗС металлов состоит из нескольких операций, выполняемых последовательно. К основным можно отнести:

  • подготовка и сборка элементов;
  • прихват;
  • сваривание;
  • оправка.

Подготовка поверхностей

Исходя из полученных на практике результатов, на качество соединения при УЗС предварительная обработка подлежащих соединению участков существенно не влияет.

Но удаление оксидных пленок с поверхностей целесообразно, так как они могут снизить прочность шва, а в иных случаях и свести к минимуму технологический эффект. Потому перед выполнением работ следует провести хотя бы обезжиривание.

Выбор режимов

Основными параметрами сварочных режимов являются амплитуда колебаний наконечника, частота, прилагаемое усилие и продолжительность операции.

Амплитуда влияет на качество удаления оксидных пленок, нагревание и размеры участков пластических деформаций. Ее величина назначается по показателю текучести материала, толщины заготовок, выполнения предварительной очистки поверхностей от оксидных пленок. Чем выше указанные параметры, тем большей назначается амплитуда, как правило, в пределах 0,5-50 мкм.

Величина усилия определяет образование пластических деформаций на участке сварки, способствует передаче УЗ-волн. Сварочное усилие назначается тем большим, чем выше твердость, показатель текучести и толщина заготовок.

Применение в промышленности

В промышленном производстве УЗС применяется для изготовления проволоки, фольги, тонколистовых изделий. От других методов соединения способ отличается возможностью сопряжения термочувствительных и разнородных материалов, так как процесс протекает при минимальном нагревании либо полном его отсутствии.

Способ широко применяется в производстве микроприборов и элементов мобильных телефонов, конденсаторов, полупроводников, микросхем. Не менее часто УЗС используется для изготовления высокоточных оптических и вакуумных приборов, реакторов, автомобилестроении.

Источник: svarka.guru

Суть и особенности ультразвуковой сварки пластмасс

Сваривание пластмасс ультразвуком — это распространенный метод сварки полимеров , например, изделий из полипропилена . Ультразвуковая сварка пластмасс прочно заняла свое положение в промышленности, поскольку позволяет сократить расходы, при этом увеличить эффективность и качество сварочных работ.

Читать еще:  Как правильно подключить рубильник

В этой статье мы подробно разберем, что такое ультразвуковая сварка, какое оборудование необходимо для сварки пластмасс ультразвуком и какие есть преимущества у этого метода.

ПРИНЦИП ДЕЙСТВИЯ УЛЬТРАЗВУКОВОЙ СВАРКИ

Итак, что из себя представляет ультразвуковой метод сварки? Говоря простыми словами, ультразвуковое оборудование генерирует механические колебания, которые затем преобразовывает в тепловую энергию, которая как раз и используется для выполнения соединений. Этот процесс также называется «использование энергии преобразования», в нашем случае преобразования механической энергии в тепловую.

Сам процесс условно состоит из двух этапов. На первом этапе тепловая энергия, полученная в результате преобразования механических колебаний, и точечно направленная на место сварки увеличивает диффузию молекул у пластмассовых деталей. После этого границы свариваемых деталей начинают плавиться и скрепляться между собой. На втором этапе границы свариваемых деталей остывают и образуют прочный шов . Это примерное описание принципа действия ультразвуковой сварки. Далее мы более подробно разберем, как получаются такие соединения.

СУТЬ ПОЛУЧЕНИЯ ШВОВ УЛЬТРАЗВУКОМ

Классическая ультразвуковая сварка существенно отличается от привычной для многих сварки металла . Для сварки металла требуется крайне высокая температура плавления, но в случае с ультразвуком необходима лишь энергия, исходящая от ультразвуковой волны, и одновременное механическое воздействие на предполагаемое место будущего шва . Поэтому нет необходимости использовать дополнительные расходники, вроде электродов или проволоки.

Сварщик подключает к ультразвуковому сварочную оборудованию генератор, благодаря которому образуются ультразвуковые колебания. Эти колебания преобразовываются в механические, происходит это с помощью специального преобразователя. Затем подключается волновод, который колеблется перпендикулярно сварному шву. За счет этого преобразованные колебания напрямую попадают в предполагаемое место будущего сварного соединения, также образуется статическое и динамическое давление. Статическое и динамическое давление направлено перпендикулярно деталям, при этом каждое из типов давлений выполняет свою функцию. Динамическое давление позволяет достичь необходимой температуры плавления для того или иного вида пластмассы , а статическое способствует формированию прочного соединения .

Благодаря всем этим особенностям с помощью ультразвуковой сварки можно соединить даже металл и пластмассу , хотя их температура плавления существенно отличается. Также пластмассу можно соединить с любым другим материалом, способным выдержать ультразвуковую сварку.

КАКИЕ ЕСТЬ ПАРАМЕТРЫ У УЛЬТРАЗВУКОВОГО СВАРОЧНОГО ОБОРУДОВАНИЯ

Для работы с ультразвуковым оборудованием следует ознакомиться с основными параметрами, которые можно отрегулировать в зависимости от вашей работы. Итак, вы можете регулировать:

  • Амплитуду колебаний торца волновода (этот параметр позволяет настроить время сварки и прочность готового шва)
  • Частоту электрических колебаний и силу давления волновода на пластмассу .
  • Продолжительность импульса (этот параметр регулирует скорость сварки).
  • Статистическое (сварочное) давление (этот параметр зависит от амплитуды колебаний и влияет на качество готового шва ).

Также существуют дополнительные параметры. К примеру: температура предварительного разогрева детали, параметры, учитывающие размер и форму деталей, и многие другие.

Для каждого отдельного типа пластмассы и шва, который необходимо получить, устанавливаются свои индивидуальные параметры. Их совокупность называется режимом сварки. Оптимальный режим сварки для тех или иных деталей в промышленных условиях выбирается только после проведенных исследований. Специалисты в лаборатории выполняют соединения с различными режимами и тестируют швы на герметичность, надежность и прочие качества. Конечно, если вы планируете использовать ультразвуковое сварочное оборудование для личных целей, вы не будете проводить исследования. Но мы рекомендуем все же потренироваться на небольших образцах. Лишь пройдя путь проб и ошибок вы сможете найти оптимальные параметры для каждого типа сварки.

ПОДРОБНАЯ КЛАССИФИКАЦИЯ

Мы классифицировали ультразвуковой метод сварки на несколько категорий, которые в свою очередь имеют свои подвиды. Итак, ультразвуковая сварка пластмасс подразделяется по:

  • Принципу перемещения вдоль шва . Может быть ручным, когда сварщик сам направляет сварочный инструмент, или механическим, когда сварка происходит с использованием автоматического оборудованию по заранее заданным параметрам. Механический способ точнее, чем ручной, но при этом нет возможности оперативно изменить направление шва, если это необходимо.
  • Принципу подачи энергии. Может быть двусторонней или односторонней. Односторонняя больше предназначена для сваривания толстых деталей и, а двусторонняя — для тонких. Но для двусторонней необходимо дополнительное охлаждение.
  • Принципу перемещения волновода. Может быть непрерывным, когда волновод перемещается с постоянной скоростью, а может быть прерывным, совершая одно короткое движение с заданными промежутками.

Более глобально ультразвуковую сварку разделяют на контактную и передаточную. Контактная сварка нужна для соединения тонких пластмассовых деталей (до 2 мм). Для выполнения шва детали укладывают друг на друга с небольшим нахлестом и по уже по нему выполняется шов.

Передаточная сварка используется во всех остальных случаях, а еще в те моменты, когда свариваемые пластмассы обладают высокими акустическими свойствами. Суть передаточной сварки заключается во введении механических колебаний в определенные точки. При этом энергия выделяется в том количестве, которое необходимо, чтобы ультразвуковая волна могла сама равномерно распространиться. В таком случае шов получается надежным и качественным. Передаточная сварка часто применяется при сварке мягкой пластмассы (ее необходимо предварительно заморозить) или для стыковых швов у полистирольных, полиамидных и поликарбонатовых деталей.

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ УЛЬТРАЗВУКОВОЙ СВАРКИ

У этого метода сварки есть масса преимуществ, благодаря чему он и стал настолько популярен в промышленности и не только. Вот некоторые из них:

  • Обеспечивает высокую производительность при относительно небольших затратах.
  • Позволяет получить на деталях любой толщины качественные герметичные швы, устойчивые к механическому воздействию.
  • Дает возможность проводить сварочные работы с деталями в любом состоянии, поверхность не нужно предварительно очищать.
  • Тепло выделяется только в одной конкретной точке, поэтому отсутствует вероятность перегрева сварного шва .
  • Напряжение не подводится к поверхности свариваемых деталей, из-за чего исключено формирование радиопомех.
  • Можно выполнять различные швы: от точечного ремонта до непрерывного соединения деталей в промышленных масштабах. При этом не нужно соблюдать особые условия, сварку ультразвуком можно проводить в любом месте, где есть электроэнергия.
  • Этот метод позволяет комбинировать сразу несколько задач. Например, можно сваривать пластмассу и одновременно наносить какое-либо полимерное напыление или осуществлять резку.
  • Можно сварить друг с другом любые пластмассы.
  • Если точно выбрать режим сварки, то можно добиться практически незаметного шва.
  • Не нужно использовать в работе расходники, а также клей или растворитель, который может оказать пагубное влияние на организм.

Но, как и у любого метода сварки , здесь не обошлось без недостатков:

  • Частная необходимость применения двусторонней подачи энергии из-за маленькой мощности процесса сварки.
  • Не существует единого способа контроля качества свариваемого соединения, из-за этого работа может получиться некачественной.

Как видите, недостатков мало. Но учтите, что все достоинства сварки ультразвуком доступны лишь в случае, если вы правильно настроите режим. Если вы начинающий, то мы рекомендуем выбрать оборудование с автоматическим определением оптимального режима сварки.

Если вы намерены выбирать режим вручную, то воспользуйтесь таблицей, приведенной ниже (здесь в качестве примера параметры для сварки пластиковых труб ). В ней указаны рекомендуемые параметры. Со временем вы получите больше опыта и сможете самостоятельно выбирать оптимальный режим.

ОБОРУДОВАНИЕ ДЛЯ СВАРКИ УЛЬТРАЗВУКОМ

Комплект ультразвукового оборудования состоит из ультразвукового генератора, пресса, опоры, преобразователя, волновода и сварочного инструмента. При этом выделяют несколько основных узлов, играющих первостепенную роль. К ним относятся:

Генератор вырабатывает ультразвуковые колебания, а затем преобразовывает их в механические, при этом сохраняя ту же частоту. Также с помощью генератора можно регулировать скорость колебаний и определять способ передачи ультразвуковой энергии.

Преобразователь (чаще всего пьезокерамический или магнитострикционный) в связке с генератором отвечает за преобразование электрической энергии в механическую и используется в аппаратах с двусторонним подводом энергии. При этом важно учесть, что такому оборудованию необходимо постоянное охлаждение, например, водное или воздушное.

  • Трансформатор упругих колебаний

Трансформатор упругих колебаний согласовывает между собой работу преобразователя и волновода, по сути являясь связующих звеном. Также он способен повысить амплитуду колебаний с торца волновода.

Волновод передает механическую энергию и создает давление в определенных местах. Роль волновода может выполнять акустический трансформатор.

Опора необходима для надежного фиксирования деталей. В некоторых случаях она напрямую используется для сварки в качестве дополнительного волновода.

Дополнительно оборудование может быть оснащено функцией автоматического или ручного контроля параметров работы. Мы рекомендуем использовать именно такое оборудование, поскольку оно позволяет выполнить работу по-настоящему качественно. Лишь в таком случае можно достигнуть максимальной прочности сварных швов .

ВМЕСТО ЗАКЛЮЧЕНИЯ

Мы убедились, что ультразвуковая сварка — это очень технологичный и эффективный метод соединения различных полимеров . Качество получаемых швов не сопоставимо с другими методами сварки , оно на голову выше. Особенно, если применяется механический способ сварки ультразвуком.

Конечно, необходимо обладать большим опытом и высокой квалификацией, чтобы соединения получилось идеальным. При этом большинство действий опытный сварщик выполняет интуитивно, а для этого нужно десять раз совершить ошибку, чтобы на одиннадцатый раз получить по-настоящему качественный шов. Тем не менее, мы рекомендуем обучиться хотя бы азам сварки ультразвуком. Это откроет для вас больше возможностей. Делитесь в комментариях своим опытом, наверняка начинающие умельцы будут рады услышать мнение профессионалов. Удачи!

Источник: zen.yandex.ru

Ссылка на основную публикацию
Adblock
detector