Относительная деформация сдвига определяется

Относительная деформация сдвига определяется

Сопротивление материалов

Сдвиг (срез)

Напряжения при сдвиге

Сдвигом называют такой вид деформации, при которой в любом поперечном сечении бруса возникает только поперечная сила.
Деформацию сдвига можно наблюдать, например, при резке ножницами металлических полос или прутков, при пробивании отверстия в заготовках на штампе (рис. 1) .

Рассмотрим брус площадью поперечного сечения А , перпендикулярно оси которого приложены две равные и противоположно направленные силы F ; линии действия этих сил параллельны и находятся на относительно небольшом расстоянии друг от друга.
Для определения поперечной силы Q применим метод сечений (рис. 2) .
Во всех точках поперечного сечения действуют распределенные силы, равнодействующую которых определим из условия равновесия оставленной части бруса:

Σ Y = 0 » F – Q = 0 ,

откуда поперечная сила Q может быть определена, как:

Поперечная сила есть равнодействующая внутренних касательных сил в поперечном сечении бруса при сдвиге.
Очевидно, что при сдвиге в поперечном сечении возникают только касательные напряжения τ .

Предполагаем, что эти касательные напряжения равномерно распределены по сечению, и, следовательно, могут быть вычислены по формуле:

На основании полученной формулы можно сделать вывод, что форма сечения на величину напряжения при деформации сдвига не влияет.

Расчеты на прочность при сдвиге

Условие прочности детали конструкции заключается в том, что наибольшее напряжение, возникающее в ней (рабочее напряжение), не должно превышать допускаемое.
Расчетная формула при сдвиге:

читается следующим образом: касательное напряжение при сдвиге не должно превышать допускаемое . (при обозначении предельно допустимых напряжений применяют квадратные скобки: [τ] или [σ] )
По этой расчетной формуле проводят проектный и проверочный расчеты и определяют допускаемую нагрузку.

Деформация сдвига, доведенная до разрушения материала, называется срезом (применительно к металлам) или скалыванием (применительно к неметаллам).
Допускаемое напряжение на срез выбирают для пластичных материалов в зависимости от предела текучести.
В машиностроении для штифтов, болтов, шпонок и других деталей, работающих на срез принимают ср] = (0,25….0,35) σт, где σт – предел текучести материала изделия.

При расчетах на срез в случае, если соединение осуществляется несколькими одинаковыми деталями (болтами, заклепками и т. д.), полагают, что все они нагружены одинаково. Расчеты соединений на срез обычно сопровождают проверкой прочности этих соединений на смятие.

Деформация Гука при сдвиге

Для установления параметров, характеризующих деформацию при сдвиге, рассмотрим элемент бруса в виде параллелепипеда abcd , на грани которого действуют только касательные напряжения τ , а противоположную грань параллелепипеда представим жестко защемленной (рис. 3) .

Деформация сдвига в указанном элементе заключается в перекашивании прямых углов параллелепипеда за счет поступательного перемещения грани bc по отношению к сечению, принятому за неподвижное.
Деформация сдвига характеризуется углом γ (гамма) и называется углом сдвига , или относительным сдвигом . Величина bb1 , на которую смещается подвижная грань относительно неподвижной, называется абсолютным сдвигом .
Относительный сдвиг γ выражается в радианах.

Напряжения и деформации при сдвиге связаны между собой зависимостью, которая называется закон Гука при сдвиге.
Закон Гука при сдвиге справедлив лишь в определенных пределах нагрузок и формулируется так: касательное напряжение прямо пропорционально относительному сдвигу .

Математически закон Гука для деформации сдвига можно записать в виде равенства:

Коэффициент пропорциональности G характеризует жесткость материала, т. е. способность сопротивляться упругим деформациям при сдвиге, и называется модулем сдвига или модулем упругости второго рода .

Модуль упругости выражается в паскалях; для различных материалов его величина определена экспериментально и ее можно найти в специальных справочниках.
При проведении ответственных расчетов на срез величина модуля упругости для каждого соединения определяется опытным путем, непосредственно перед расчетом, либо берется из справочника с применением увеличенного запаса прочности.

Следует отметить, что между тремя упругими постоянными (модулями упругости) E , G и ν существует следующая зависимость:

Принимая для сталей ν ≈ 0,25, получаем: Gст ≈ 0,4 Ест .

Материалы раздела «Сопротивление материалов»:

Источник: k-a-t.ru

Относительная деформация сдвига определяется

В твердых телах – аморфных и кристаллических – частицы (молекулы, атомы, ионы) совершают тепловые колебания около положений равновесия, в которых энергия их взаимодействия минимальна. При увеличении расстояния между частицами возникают силы притяжения, а при уменьшении – силы отталкивания (см. §3.1). Силы взаимодействия между частицами обусловливают механические свойства твердых тел.

Деформация твердого тела является результатом изменения под действием внешних сил взаимного расположения частиц, из которых состоит тело, и расстояний между ними.

Существует несколько видов деформаций твердых тел. Некоторые из них представлены на рис. 3.7.1.

Рисунок 3.7.1.

Простейшим видом деформации является деформация растяжения или сжатия. Ее можно характеризовать абсолютным удлинением , возникающим под действием внешней силы Связь между и зависит не только от механических свойств вещества, но и от геометрических размеров тела (его толщины и длины).

Отношение абсолютного удлинения к первоначальной длине образца называется относительным удлинением или относительной деформацией :

При растяжении , при сжатии .

Если принять направление внешней силы, стремящейся удлинить образец, за положительное, то при деформации растяжения и – при сжатии. Отношение модуля внешней силы к площади сечения тела называется механическим напряжением :

За единицу механического напряжения в СИ принят паскаль (). Механическое напряжение измеряется в единицах давления.

Зависимость между и является одной из важнейших характеристик механических свойств твердых тел. Графическое изображение этой зависимости называется диаграммой растяжения . По оси абсцисс откладывается относительное удлинение , а по оси ординат – механическое напряжение . Типичный пример диаграммы растяжения для металлов (таких как медь или мягкое железо) представлен на рис. 3.7.2.

Рисунок 3.7.2.

При малых деформациях (обычно существенно меньших 1 %) связь между и оказывается линейной (участок на диаграмме). При этом при снятии напряжения деформация исчезает. Такая деформация называется упругой. Максимальное значение , при котором сохраняется линейная связь между и , называется пределом пропорциональности ). На линейном участке выполняется закон Гука :

Коэффициент в этом соотношении называется модулем Юнга .

При дальнейшем увеличении напряжения связь между и становится нелинейной (участок ). Однако при снятии напряжения деформация практически полностью исчезает, т. е. восстанавливаются размеры тела. Максимальное напряжение на этом участке называется пределом упругости .

Если , образец после снятия напряжения уже не восстанавливает свои первоначальные размеры и у тела сохраняется остаточная деформация . Такие деформации называются пластическими (участки , и ). На участке деформация происходит почти без увеличения напряжения. Это явление называется текучестью материала. В точке достигается наибольшее напряжение , которое способен выдержать материал без разрушения ( предел прочности ). В точке происходит разрушение материала.

Материалы, у которых диаграмма растяжения имеет вид, показанный на рис. 3.7.2, называются пластичными . У таких материалов обычно деформация , при которой происходит разрушение, в десятки раз превосходит ширину области упругих деформаций. К таким материалам относятся многие металлы.

Материалы, у которых разрушение происходит при деформациях, лишь незначительно превышающих область упругих деформаций, называются хрупкими (стекло, фарфор, чугун).

Аналогичным закономерностям подчиняется и деформация сдвига (рис. 3.7.1 (2)). В этом случае вектор силы направлен по касательной к поверхности образца. Относительная деформация определяется безразмерным отношением , а напряжение – отношением (сила, действующая на единицу площади поверхности). При малых деформациях

Коэффициент пропорциональности в этом отношении называется модулем сдвига . Модуль сдвига для большинства твердых материалов в меньше модуля Юнга. Например, у меди , . Следует помнить, что у жидких и газообразных веществ модуль сдвига равен нулю.

На рис. 3.7.1 (3) показана деформация всестороннего сжатия твердого тела, погруженного в жидкость. В этом случае механическое напряжение совпадает с давлением в жидкости. Относительная деформация определяется как отношение изменения объема к первоначальному объему тела. При малых деформациях

Коэффициент пропорциональности в этой формуле называется модулем всестороннего сжатия .

Всестороннему сжатию могут подвергаться не только твердые тела, но и жидкости и газы. У воды , у стали . На дне Тихого океана, на глубине порядка , давление приблизительно равно . В этих условиях относительное изменение объема воды составляет , в то время как для стального тела оно составляет всего лишь , т. е. в меньше. Твердые тела с их жесткой кристаллической решеткой значительно менее сжимаемы по сравнению с жидкостями, атомы и молекулы которых не так сильно связаны со своими соседями. Сжимаемость газов на много порядков выше, чем у жидкостей и твердых тел.

Величина модуля всестороннего сжатия определяет скорость звука в данном веществе (см. §2.7).

Источник: physics.ru

Деформация сдвига

Возьмем однородное тело, имеющее форму прямоугольного параллелепипеда, и приложим к его противолежащим граням силы и (f1 = f2 =f), направленные параллельно этим граням (рис. 45). Если действие сил будет равномерно распределено по всей поверхности соответствующей грани S, то в любом сечении, параллельном этим граням, возникнет тангенциальное напряжение

(116)

Под действием напряжений тело деформируется таким образом, что верхняя (на рисунке) грань сместится относительно нижней на некоторое расстояние а. Если тело мысленно разбить на элементарные горизонтальные слои, то каждый слой окажется сдвинутым относительно соседних с ним слоев. По этой причине деформация такого вида получила название сдвига.

При деформации сдвига любая прямая, первоначально перпендикулярная к горизонтальным слоям, повернется на некоторый угол φ. Следовательно, отношение сдвига δа двух произвольно взятых слоев к расстоянию между этими слоями δb будет одинаково для любой пары слоев. Это отношение естественно взять в качестве характеристики деформации сдвига:

(117)

Величина γназывается относительным сдвигом. В силу малости угла φ можно положить tgφ = φ. Следовательно, относительный сдвиг γоказывается равным углу сдвига φ. Опыт показывает, что относительный сдвиг пропорционален тангенциальному напряжению:

(118)

Коэффициент G зависит только от свойств материала и называется модулем сдвига. Он равен такому тангенциальному напряжению, при котором угол сдвига оказался бы равным 45° (tgφ = 1), если бы при столь больших деформациях не был превзойден предел упругости.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9746 — | 7647 — или читать все.

188.64.173.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник: studopedia.ru

Что такое деформация? Виды деформации

С процессом деформации человек начинает сталкиваться с первых дней своей жизни. Она позволяет нам чувствовать прикосновения. Ярким примером деформации из детства можно вспомнить пластилин. Существуют разные виды деформации. Физика рассматривает и изучает каждый из них. Для начала введём определение самого процесса, а затем постепенно рассмотрим возможные классификации и виды деформации, которые могут возникать в твёрдых объектах.

Определение

Деформация — это процесс перемещения частиц и элементов тела относительно взаимного местоположения в теле. Проще говоря, это физическое изменение внешних форм какого-либо объекта. Есть следующие виды деформации:

Как и любую другую физическую величину, деформацию можно измерить. В простейшем случае используется следующая формула:

где е — это простейшая элементарная деформация (увеличение или уменьшение длины тела); р2 и р1 — длина тела после и до деформации соответственно.

Классификация

В общем случае можно выделить следующие виды деформации: упругие и неупругие. Упругие, или обратимые, деформации исчезают после того, как пропадает воздействующая на них сила. Основа этого физического закона используется в силовых тренажёрах, например, в эспандере. Если говорить о физической составляющей, то в основе лежит обратимое смещение атомов — они не выходят за пределы взаимодействия и рамки межатомных связей.

Неупругие (необратимые) деформации, как вы понимаете, являются противоположным процессом. Любая сила, которую приложили к телу, оставляет следы/деформацию. К этому типу воздействия относится и деформация металлов. При таком типе изменения формы зачастую могут меняться и другие свойства материала. Например, при деформации, вызванной охлаждением, может увеличиться прочность изделия.

Как уже было сказано, существуют различные виды деформации. Они подразделяются по характеру изменения формы тела. В механике сдвигом называют такое изменение формы, при котором нижняя часть бруса закреплена неподвижно, а сила прикладывается касательно к верхней поверхности. Относительная деформация сдвига определяется по следующей формуле:

где Х12 — это абсолютный сдвиг слоёв тела (то есть расстояние, на которое сместился слой); В — это расстояние между закреплённым основанием и параллельным сдвинутым слоем.

Если виды механических деформаций разделяли бы по сложности вычислений, то этот занял бы первое место. Такой вид изменения формы тела возникает при воздействии на него двух сил. При этом смещение любой точки тела происходит перпендикулярно к оси воздействующих сил. Говоря о таком типе деформации, следует упомянуть следующие величины, подлежащие вычислению:

  1. Ф — угол закручивания цилиндрического стержня.
  2. Т — момент действия.
  3. Л — длина стержня.
  4. Г — момент инерции.
  5. Ж — модуль сдвига.

Формула выглядит так:

Другая величина, требующая вычисления, это относительный угол закручивания:

Q=Ф/Л (значения берутся из предыдущей формулы).

Это вид деформации, возникающий при изменении положения и формы осей бруса. Он также подразделяется на два типа — косой и прямой. Прямой изгиб — это такой вид деформации, при котором действующая сила приходится прямо на ось рассматриваемого бруса, в любом другом случае речь идёт о косом изгибе.

Растяжение-сжатие

Различные виды деформации, физика которых достаточно хорошо изучена, редко используются для решения различных задач. Однако при обучении в школе один из них зачастую применяется для определения уровня знаний учеников. Кроме этого названия, у данного типа деформации также присутствует другое, которое звучит так: линейное напряженное состояние.

Растяжение (сжатие) происходит, если сила, воздействующая на объект, проходит через центр его массы. Если говорить о визуальном примере, то растяжение приводит к увеличению длины стержня (иногда к разрывам), а сжатие — к уменьшению длины и возникновению продольных изгибов. Напряжение, вызываемое таким видом деформации, прямо пропорционально силе, воздейсвующей на тело, и обратно пропорционально площади поперечного сечения бруса.

Закон Гука

Основной закон, рассматриваемый при деформации тела. Согласно ему, деформация, возникающая в теле, прямо пропорциональна воздействующей силе. Единственная оговорка заключается в том, что он применим только при малых значениях деформации, поскольку при больших значениях и превышении предела пропорциональности эта связь становится нелинейной. В простейшем случае (для тонкого растяжимого бруска) закон Гука имеет следующий вид:

где Ф — это приложенная сила; к — коэффициент упругости; Л — это изменение длины бруса.

Если с двумя величинами всё понятно, то коэффициент (к) зависит от нескольких факторов, таких как материал изделия и его размеры. Его значение также можно вычислить по следующей формуле:

где Е — это модуль Юнга; С — площадь поперечного сечения; Л — длина бруса.

На самом деле существует множество способов вычисления деформации предмета. Различные виды деформации используют разные коэффициенты. Виды деформации отличаются не только по форме результата, но и по силам, воздействующим на объект, а для вычислений вам потребуются недюжинные усилия и знания в области физики. Надеемся, что эта статья поможет вам разобраться в понимании базовых физических законов, а также позволит продвинуться немного дальше в изучении этого раздела физики.

Источник: www.syl.ru

Деформация сдвига

Одним из распространённых форм деформации является сдвиг отдельных слоёв изделия в вертикальной или горизонтальной плоскости. Такое смещение называется – деформация сдвига. Изменение положения может вызывать постепенное или резкое изменение первоначальной формы конструкции или отдельной детали. Виды деформации характеризуют порядок произведенного смещения и определяют порядок расчёта основных характеристик. В технической механике и сопромате рассматривают два вида деформации со сдвигом: плавное (смятие) и резкое (разрыв или срез).

Определение и общие сведения о деформации сдвига

Основным признаком, характеризующим деформацию сдвига, является сохранение постоянства объёма. Не зависимо от того, в каком направлении действуют силовые факторы этот параметр остаётся неизменным.

Примеры проявления деформации сдвига можно обнаружить при проведении различного рода работ. К таким случаям относятся:

  • при распиловке бруса;
  • отрезание или рубка металла;
  • в результате нарушения целостности крепления металлических или деревянных деталей, соединённых метизами;
  • балки в местах крепления опор;
  • места скрепления мостовых пролётов;
  • крепёж на перемычках соединения железнодорожных рельс;
  • разрезания листа бумаги ножницами.

При определённых условиях наблюдается чистый сдвиг. Он определяется как сдвиг, при котором на все четыре грани (например, прямоугольной детали) оказывают воздействие только напряжения, направленные по касательной к поверхности. В этом случае произойдёт плавный сдвиг всех слоёв детали от верхних к нижним слоям. Тогда внешняя сила изменяет форму детали, а объём сохраняется.

Для оценки величины сдвига и надёжности конструкции используют следующие параметры:

  • величина, направление и точка приложения воздействующей силы;
  • модуль сдвига;
  • угол изменения внешних граней изделия;
  • тангенциальное напряжение;
  • модуль кручения (зависит от физико-механических характеристик материала);

Расчёт и практическое измерение этих параметров необходимы для оценки устойчивости и целостности конструкции. Формула, позволяющая вычислить допустимые изменения, учитывает все воздействия на конкретные слои детали и всю конструкции в целом.

Основными итоговыми параметрами считаются абсолютный и относительный сдвиг. Абсолютным он называется при равенстве углу возникшего отклонения от первоначального положения грани. Относительный равен частному от деления величины отклонения к расстоянию между гранями, расположенными на противоположных сторонах. Во время упругой деформации сдвига одни элементы подвергаются сжатию, другие расширению.

В случае воздействия деформации величина угла считается пропорциональной внешней силе. Увеличение степени воздействия может превратить деформацию сдвига в срез. Это приведёт к разрушению не только элементов крепления (болтов, шпилек, заклёпок), но и всей детали.

Для наглядности изменения формы детали при деформации сдвига динамика процесса обозначается с помощью величины угла смещения и векторов возникающих напряжений. Действующая сила направлена в сторону смещения слоёв рассматриваемой детали.

В современных условиях угол сдвига измеряется различными техническими приборами. Основным прибором для измерения параметров смещения является тензомер. Эти приборы работают на различных физических принципах:

  • оптические (в том числе лазерные);
  • акустические;
  • рентгеновские; электрические;
  • пневматические.

В этих приборах относительная деформация сдвига обрабатывается на современных вычислительных средствах с применением соответствующего программного обеспечения. Каждый метод обладает своими достоинствами и недостатками. Их применение зависит от поставленной задачи, технической и финансовой возможности.

Закон Гука

Основным соотношением, объединяющим физические параметры для описания протекающих процессов, является закона Гука для деформации сдвига. Этот закон позволят решить задачу нахождения угла отклонения грани объекта от исходного положения.

Небольшие напряжения вызывают углы отклонения, которые имеют небольшие величины. На итоговое значение влияют следующие параметры:

  • сила упругости (её вектор направлен вдоль поверхности);
  • модуль упругости второго рода;
  • площадь поверхности.

Различные материалы обладают своим значением модуля упругости. Он является величиной постоянной и определяет способность материала оказывать сопротивление возникающему сдвигу.

Вычисляют касательное напряжение на гранях с помощью закона Гука. Он справедлив для малых углов и представляет произведение модуля сдвига на величину угла. Согласно теории упругости он позволяет установить связь с модулем Юнга и коэффициентом Пуассона.

Графически действие закона Гука представлено прямой линией. В качестве уравнения этой линии может использоваться уравнение прямой с угловым коэффициентом подробно описанном в аналитической геометрии. Она проходит начало координат, выбранной системы отсчёта.

Напряжение при сдвиге

Воздействие внешней силы на грань приводит к возникновению в изделии изменения формы. Все напряжения делятся на две категории: нормальные и касательные. Нормальными считаются внутренние напряжения, возникающие в различных слоях изделия, подверженного деформации.

Напряжения и деформации при сдвиге описываются с применением аналитических выражений и графических изображений. Общее состояние описывается пространственным (трёхкоординатным) напряжением. Если в конкретном случае можно выявить сечения, в которых оба вида напряжений равны нулю, можно перейти к более простым моделям описания этого процесса. Ими являются двухкоординатное (плоское) напряжённое состояние или линейное. Две последних модели являются частными случаями трёхкоординатного напряжённого состояния.

Касательные напряжения являются мерой скольжения одного поперечного слоя относительно другого. В изменениях на поверхности каждого слоя возникают только касательные напряжения. Для оценки полной картины деформации используют следующие теоретические положения:

  • закон парности касательных напряжений;
  • вычисление экстремальных нормальных напряжений;
  • определение всех тангенциальных напряжений.

Оценка их всех при деформации смещения позволят оценить прочность конструкции.

Расчёты на прочность при сдвиге

Оценка прочностных характеристик изделий производится для определения наступления трёх моментов деформации:

  1. Смещение отдельных слоёв (появления угла деформации).
  2. Смятие элементов крепления.
  3. Сдвиг.
  4. Разрыв.

Расчёт на прочность необходим для определения условий наступления каждого из видов. На практике для более наглядной оценки характеристик прочности и стойкости к деформации решают существующие аналитические выражения и изображают эпюры отражающие направления воздействия различных видов напряжений.

Получение численных характеристик возможно благодаря применению разработанных методов решения систем дифференциальных уравнений. Уточнение аналитических выражений производится на основе принятых гипотез.

Расчёт допустимых напряжений производится на основании первой, третьей и четвёртой гипотезы прочности. Каждая из гипотез принимается для различных материалов, обладающих своими физико-механическими характеристиками.

Прочность находиться на каждом из этапов разработки конкретной детали. Сначала вычисляют величины допустимых напряжений и угол отклонения на предварительном (проверочном) этапе. Это позволяет определить их уровни, величины и направление приложенных сил. После этого приступают к проектированию. На этом этапе производится выбор материала детали и крепёжных элементов с учётом необходимой прочности каждого элемента конструкции. На конечном этапе ещё раз проверяют допустимые нормы нагрузки и способность готовой детали выдерживать допустимую и дополнительную нагрузку, то есть определяют запас прочности.

Наиболее показательными являются расчёты для чистого сдвига. В этом случае при расчёте рассматривают следующие аспекты решения задачи:

  • Статический (составляется уравнение равновесия). В этом случае используется предположение о равномерности распределения касательных напряжений. Однако в некоторых случаях они распределяются не равномерно, что усложняет решение поставленной задачи. Он позволяет установить связь возникших напряжений с действующими внешними силами. Это производиться благодаря получению семейства решений дифференциальных уравнений равновесия для всего объёма детали.
  • Геометрический (деформационный). Позволяет отобразить связь между отдельными небольшими участками исследуемой детали.
  • Математический. Позволяет выбрать метод решения составленной системы уравнений. Провести математическое моделирование протекающих процессов.
  • Физический. Устанавливает связь между физическими процессами при деформации с учётом физических свойств материала и возникшими напряжениями (механическими свойствами).

На математическом и физическом этапе рассмотрения поставленной задачи применяются следующие основные расчетные выражения и допущения:

  • закон Гука для деформации смещения;
  • гипотезы прочности (с учётом физических и механических свойств выбранного материала);
  • выбор системы эквивалентных напряжений;
  • упрощения при изображении эпюр, отображающих направления действующих сил и возникших напряжений;
  • принятие основных положений для случая чистого сдвига.

Наиболее важный практический интерес представляют два случая – смятие и разрыв.

В первом случае происходит пластическая деформация детали, когда интенсивность возникших напряжений превышает предел текучести выбранного материала. Размеры такой деформации зависят от характера и интенсивности действия внешних сил, показателей прочности материала, изменения температурного режима.

При интенсивности воздействия, превышающем прочность материала, происходит разрыв. Оба эти процесса приводят к нарушению механических соединений деталей (например, метизов, заклёпок, втулок).

Разработанные методы расчёта прочности позволяют проектировать и изготавливать детали с заданием, превышающим этот предел. Это позволяет существенно повысить надёжность и долговечность всей конструкции. В настоящее время разработан стройный математический аппарат создания моделей допустимой деформации. Его реализуют с применением созданных программных средств, которые позволяют получить числовые характеристики прочности и построить графические изображения эпюр в формате 3D графики.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: stankiexpert.ru

Читать еще:  Как проверить генератор с помощью лампочки
Ссылка на основную публикацию
Adblock
detector