Как создать плазменный тороид

Как создать плазменный тороид

Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Формирование шаровой молнии

Итак, плазменный тороид в завершающей стадии формирования стянут двумя собственными магнитными полями в овальную форму со сквозным вертикальным отверстием небольшого диаметра на месте центральной вертикальной оси. Центральное отверстие тороида сократилось, потому что упругость силовых линий захваченного магнитного поля линейной молнии и упругость силовых линий собственного продольного поля направлены к центральной оси тороида, а они стремятся сократиться до возможно минимальной длины. Через это отверстие замыкаются все силовые линии другого собственного поперечного магнитного поля тороида, которые также стремятся сократиться до минимальной длины. Стянутый тороид (теперь овал) выглядит в поперечном сечении как два рядом расположенных вертикально удлиненных плосковыпуклых овала, обращенных плоскими сторонами к отверстию. Массивные ионы движутся по периферии овала, то есть по широким спиралям, сжатым в овал, образующим в результате такого движения замкнутую овальную трубу. Внутри вдоль трубы в верхней ее половине движутся с некоторым преимуществом протоны по спиралям меньшего радиуса, а в нижней половине – преимущественно электроны по своим спиралям совсем малого радиуса. Хотя плазменный овал в целом остается квазинейтральным, но поскольку положительные ионы преимущественно движутся по периферии овала, то этим самым они экранируют отрицательный заряд внутренних электронов и внешне у шаровой молнии больше проявляется положительный заряд.

На рисунке изображена в поперечном сечении шаровая молния, представляющая собою плазменный тороид, стянутый двумя собственными магнитными полями. В сечении тороид выглядит как два плосковыпуклых овала, обращенных плоскими сторонами к центральному отверстию. Продольное поле окрашено условно синим цветом, поперечное зеленым и изображены эти поля также условно одно поверх другого, в действительности же они взаимно пронизывают друг друга. Азотные и кислородные ионы, движущиеся по спиралям на периферии тороида, образуют замкнутую саму на себя овальную трубу большого диаметра. Внутри трубы по замкнутому кольцу движутся протоны и электроны по спиралям малого диаметра. При формировании тороида часть протонных спиралей сместились вверх, а часть электронных спиралей сместились вниз овальной трубы. Разделившиеся протоны и электроны образуют электрическое поле, иначе говоря, заряженный электрический конденсатор.

Наблюдатели сообщают, что иногда из ярко светящегося клубка, возникающего на нижнем конце разряда линейной молнии, выскакивают несколько шаровых молний. Наблюдают шаровые молнии, которые разделяются на несколько мелких молний. Наблюдались шаровые молнии, из которых даже при взрыве выскакивали молнии меньшего размера.

Думается, что предлагаемая идея может объяснить такие явления. При разряде линейной молнии в магнитное поле с холодной плазмой, охватывающей ее торец, влетают несколько пространственно разделенных порций горячей плазмы. Каждая отдельная порция горячих ионов и электронов образуют там с уже имеющимися ионными и электронными спиралями свою обособленную от других подогретую спиральную трубу, замкнутую в тороид. В результате внутри каждой подогретой тороидальной трубы в магнитном поле движутся по своим спиральным дорожкам электроны и протоны и те, что были там и те, что влетели в холодную плазму вместе с порцией горячей плазмы. Двигаясь в неоднородном магнитном поле внутри ионной трубы, протоны и электроны частично разделяются, образуя электрическое поле. Если образовавшиеся автономные тороиды не успели объединиться, сцепившись собственными поперечными магнитными полями, то они выталкиваются в атмосферу по отдельности, а если успели объединиться, то выталкивается одна большая шаровая молния в виде удлиненного овала. В [4, стр. 120] говорится: «М.Т.Дмитриев отмечает, что шаровая молния (точнее, центральная ее часть, окруженная ореолом) представляла собой вытянутый вдоль вертикального диаметра шар». Далее говорится: «Ряд других наблюдателей сообщают о вытягивании молний вдоль вертикального диаметра, изредка довольно значительном, в большинстве же случаев – небольшом».

Таким образом, шаровая молния может включать в себя несколько автономных молний. Автономные тороиды молний нанизаны на одну общую ось, проходящую через центральные отверстия тороидов. Каждый тороид охвачен локально собственным продольным магнитным полем, а собственные поперечные магнитные поля тороидов, складываясь, образуют одно общее поперечное магнитное поле, охватывающее все автономные тороиды и замыкающееся через общее центральное отверстие шаровой молнии. При возникновении неустойчивости объединенная молния может разделиться, иногда с взрывом, то есть взрывается одна из них, а некоторые при взрыве могут и уцелеть.

Немного больше о технологиях >>>

Привычный способ восприятия времени — причина войн на планете
Мы знаем, что прошлое и будущее существует только в нашем образном мышлении. Настоящее измерить нечем и поэтому невозможно. Стрелки часов двигаются в пространстве, а показывают время – не парадокс ли это? Наше тело – это часть пространства. Осознавание линейных размеров собстве .

Что такое синергетика
— Итак, вы хотите знать, каков простой и ясный ответ на Великий Вопрос Жизни,Вселенной и всего остального? вопросил Проницательный Интеллектоматик. -Да! Немедленно!-воскликнули инженеры. -Сорок два,с беспредельным спокойствием сообщил компьютер. (Дуглас Адаме, Руко .

Источник: www.technologyside.ru

TOKAMAK (сокр. от «тороидальная камера с магн. катушками»)- устройство для удержания высокотемпературной плазмы с помощью сильного магн. поля. Идея T. была высказана в 1950 академиками И. E. Таммом и А. Д. Сахаровым; первые эксперим. исследования этих систем начались в 1956.

Принцип устройства ясен из рис. 1. Плазма создаётся в тороидальной вакуумной камере, к-рая служит как бы единственным замкнутым витком вторичной обмотки трансформатора. При пропускании нарастающего во времени тока в первичной обмотке трансформатора 1 внутри вакуумной камеры 5 создаётся вихревое продольное элек-трич. поле. При не очень большой начальной плотности газа (обычно используется водород или его изотопы) происходит его электрич. пробой и вакуумная камера заполняется плазмой с последующим нарастанием большого продольного тока Ip. В совр. крупных T. ток в плазме составляет неск. миллионов ампер. Этот ток создаёт собственное полоидальное (в плоскости поперечного сечения плазмы) магн. поле Вq. Кроме того, для стабилизации плазмы используется сильное продольное магн. поле Вf, создаваемое с помощью спец. обмоток тороидального магн. поля. Именно комбинацией тороидального и полоидального магн. полей обеспечивается устойчивое удержание высокотемпературной плазмы (см. Тороидальные системы ),необходимое для осуществления управляемого термоядерного синтеза.

Рис. 1. Схема токамака: 1 — первичная обмотка трансформатора; 2-катушки тороидального магнитного поля; 3 — лайнер, тонкостенная внутренняя камера для выравнивания тороидального электрического поля; 4 — катушки полоидального магнитного поля; 5 — вакуумная камера; б-железный сердечник (магнитопровод).

Операционные пределы. Магн. поле T. достаточно хорошо удерживает высокотемпературную плазму, но только в определённых пределах изменения её параметров. Первые 2 ограничения относятся к току плазмы I p и её ср. плотности п, выраженной в единицах числа частиц (электронов или ионов) в 1 м 3 . Оказывается, что при заданной величине тороидального магн. поля ток плазмы не может превышать нек-рого предельного значения, иначе плазменный шнур начинает извиваться по винтовой линии и в конце концов разрушается: развивается т. н. неустойчивость срыва тока. Для характеристики предельного тока используется коэф. запаса q по винтовой неустойчивости, определяемый соотношением q = 5B j a 2 /RI p . Здесь а — малый, R — большой радиус плазменного шнура, B j — тороидальное магн. поле, I p — ток в плазме (размеры измеряются в метрах, магн. поле — в теслах, ток — в MA). Необходимым условием устойчивости плазменного шнура является неравенство q>], к-рое наз. к р и т е р и е м К р у-с к а л а — Ш а ф р а н о в а. Эксперименты показывают, что надёжно устойчивый режим удержания достигается лишь при значениях .

Для плотности имеются 2 предела — нижний и верхний. Ниж. предел по плотности связан с образованием т. н. ускоренных, или убегающих электронов. При малой плотности частота столкновений электронов с ионами становится недостаточной для предотвращения их перехода в режим непрерывного ускорения в продольном электрич. поле. Ускоренные до высоких энергий электроны могут представлять опасность для элементов вакуумной камеры, поэтому плотность плазмы выбирается настолько большой, чтобы ускоренных электронов не было. С др. стороны, при достаточно высокой плотности режим удержания плазмы вновь становится неустойчивым из-за радиационных и атомарных процессов на границе плазмы, к-рые приводят к сужению токового канала и развитию винтовой неустойчивости плазмы. Верх. предел по плотности характеризуется безразмерными параметрами My-раками M=nR/B j и Хьюгелла H=nqR/B j (здесь ср. по сечению плотность электронов n измеряется в единицах 10 20 частиц/м 3 ). Для устойчивого удержания плазмы необходимо, чтобы числа M и H не превышали нек-рых критич. значений.

При нагреве плазмы и повышении её давления появляется ещё один предел, характеризующий максимальное устойчивое значение давления плазмы, p = n(T e +T i ), где Т е , T i -электронная и ионная темп-ры. Этот предел накладывается на величину b, равную отношению ср. давления плазмы к давлению магн. поля; упрощённое выражение для предельного значения b даётся соотношением Тройона b c =gI p /aB j , где g-числовой множитель, равный примерно 3 . 10 -2 .

Термоизоляция. Возможность нагрева плазмы до очень высоких темп-р связана с тем, что в сильном магн. поле траектории заряж. частиц выглядят как спирали, навитые на линии магн. поля. Благодаря этому электроны и ионы длительное время удерживаются внутри плазмы. И только за счёт столкновений и небольших флуктуации электрич. и магн. полей энергия этих частиц может переноситься к стенкам в виде теплового потока. Эти же механизмы определяют величину диффузионных потоков. Эффективность магн. термоизоляции плазмы характеризуется энер-гетич. временем жизни т E = W/P, где W-полное энергосодержание плазмы, a P-мощность нагрева плазмы, необходимая для поддержания её в стационарном состоянии. Величину t E можно рассматривать также как характерное время остывания плазмы, если мощность нагрева внезапно отключается. В спокойной плазме потоки частиц и тепла к стенкам камеры создаются за счёт парных столкновений электронов и ионов. Эти потоки вычисляются теоретически с учётом реальных траекторий заряж. частиц в магн. поле T. Соответствующая теория диффузионных процессов наз. неоклассической (см. Переноса процессы ).В реальной плазме T. всегда присутствуют небольшие флуктуации полей и потоков частиц, поэтому реальные уровни потоков тепла и частиц обычно значительно превышают предсказания неоклассич. теории.

Читать еще:  Как сделать торцовку из циркулярки

Эксперименты, проведённые на многих T. разл. формы и размеров, позволили суммировать результаты исследований механизмов переноса в виде соответствующих эм-пирич. зависимостей. В частности, были найдены зависимости энергетич. времени жизни т E от осн. параметров плазмы для разл. мод удержания. Эти зависимости наз. с к е й л и н г а м и; они успешно используются для предсказания параметров плазмы во вновь вводимых в строй установках.

Самоорганизация плазмы. В плазме T. постоянно имеются слабонелинейные колебания, к-рые влияют на профили распределения темп-ры, плотности частиц и плотности тока по радиусу, как бы управляют ими. В частности, в центр. области плазменного шнура очень часто присутствуют т. н. пилообразные колебания, отражающие периодически повторяющийся процесс постепенного обострения и затем резкого уплощения профиля темп-ры. Пилообразные колебания предотвращают контракцию тока к магн. оси тора (см. Контракция газового разряда). Кроме того, в T. время от времени возбуждаются винтовые моды (т. н. т и р и н г-м о д ы), к-рые вне шнура наблюдаются в виде низкочастотных магн. колебаний. Тиринг-моды способствуют установлению более устойчивого распределения плотности тока по радиусу. При недостаточно осторожном обращении с плазмой тиринг-моды могут нарасти настолько, что вызываемые ими возмущения магн. поля разрушают магн. поверхности во всём объёме плазменного шнура, магн. конфигурация разрушается, энергия плазмы выбрасывается к стенкам и ток в плазме прекращается из-за её сильного охлаждения (см. Тиринг-неустойчивости).

Кроме этих объёмных колебаний существуют моды колебаний, локализованные на границе плазменного шнура. Эти моды очень чувствительны к состоянию плазмы на самой периферии, их поведение усложнено атомарными процессами. Внеш. и внутр. моды колебаний могут сильно влиять на процессы переноса тепла и частиц, они приводят к возможности перехода плазмы из одного режима магн. термоизоляции в другой и обратно. Если в плазме T. распределение частиц по скоростям сильно отличается от распределения Максвелла, то возникает возможность для развития кинетич. неустойчивостей. Напр., при рождении большого кол-ва убегающих электронов развивается т. н. веерная неустойчивость, приводящая к трансформации продольной энергии электронов в поперечную. Кинетич. неустойчивости развиваются также при наличии ионов с высокой энергией, возникающих при дополнит. нагреве плазмы.

Нагрев плазмы. Плазма любого T. автоматически подогревается за счёт джоулева тепла от протекающего по ней тока. Джоулева энерговыделения достаточно для получения темп-ры в неск. млн. градусов. Для целей управляемого термоядерного синтеза нужны темп-ры >10 8 К, поэтому все крупные T. дополняются мощными системами нагрева плазмы. Для этого используются либо эл—магн. волны разл. диапазонов, либо прямая инжекция быстрых частиц в плазму. Для высокочастотного нагрева плазмы удобно использовать резонансы, к-рые отвечают внутр. колебат. процессам в плазме. Напр., нагрев ионной компоненты удобно осуществлять в диапазоне гармоник циклотронных частот либо осн. ионов плазмы, либо специально подобранных ионов-присадок. Нагрев электронов осуществляется при электронно-циклотронном резонансе.

При нагреве ионов с помощью быстрых частиц обычно используются мощные пучки нейтральных атомов. Такие пучки не взаимодействуют с магн. полем и проникают глубоко внутрь плазмы, там они ионизуются и захватываются магн. полем T.

С помощью дополнит, методов нагрева темп-ру плазмы T. удаётся поднять >3·10 8 К, что вполне достаточно для протекания мощной термоядерной реакции. В будущих разрабатываемых T.-реакторах нагрев плазмы будет осуществляться высокоэнергетичными альфа-частицами, возникающими при реакции слияния ядер дейтерия и трития.

Стационарный токамак. Обычно ток в плазме протекает только при наличии вихревого электрич. поля, создаваемого за счёт увеличения магн. потока в индукторе. Индукционный механизм поддержания тока ограничен во времени, так что соответствующий режим удержания плазмы является импульсным. Однако импульсный режим не является единственно возможным, нагрев плазмы может использоваться и для поддержания тока, если наряду с энергией в плазму передаётся и импульс, разный для разных компонент плазмы. Неиндукционное поддержание тока облегчается за счёт генерации тока самой плазмой при её диффузионном расширении к стенкам (бутстрэп-эффект). Бутстрэп-эффект был предсказан неоклассич. теорией и подтверждён затем экспериментально. Эксперименты показывают, что плазма T. может удерживаться стационарно, и гл. усилия по практич. освоению стационарного режима направлены на повышение эффективности поддержания тока.

Дивертор, управление примесями. Для целей управляемого термоядерного синтеза требуется очень чистая плазма на основе изотопов водорода. Чтобы ограничить примесь др. ионов в плазме, в ранних T. плазма ограничивалась т. н. л и м и т е р о м (рис. 2, а), т. е. диафрагмой, не допускающей соприкосновения плазмы с большой поверхностью камеры. В совр. T. используется гораздо более сложная диверторная конфигурация (рис. 2, б), создаваемая катушками полоидального магн. поля. Эти катушки необходимы даже для плазмы круглого сечения: с их помощью создаётся вертикальная компонента магн. поля, к-рая при взаимодействии с осн. током плазмы не позволяет плазменному витку выброситься на стенку по направлению большого радиуса. В диверторной конфигурации витки полоидального магн. поля расположены так, чтобы сечение плазмы было вытянуто в вертикальном направлении. При этом замкнутые магн. поверхности сохраняются только внутри сепаратрисы, снаружи её силовые линии уходят внутрь диверторных камер, где происходит нейтрализация потоков плазмы, вытекающих из осн. объёма. В диверторных камерах удаётся смягчить нагрузку от плазмы на диверторные пластины за счёт дополнит. охлаждения плазмы при атомарных взаимодействиях.

Рис. 2. Поперечный разрез плазмы круглого сечения (а)и вертикально вытянутого с образованием диверторной конфигурации (6): 1-плазма; 2- лимитер; 3 — стенка камеры; 4 — сепаратриса; 5 -диверторная камера; 6 — ди-верторные пластины.

Токамак-реактор. Гл. целью исследований на установках T. является освоение концепции магн. удержания плазмы для созданий термоядерного реактора. На T. удаётся создать устойчивую высокотемпературную плазму с темп-рой и плотностью, достаточными для термоядерного реактора; установлены закономерности для термоизоляции плазмы; осваиваются методы поддержания тока и управления уровнем примесей. Работы на T. переходят из фазы чисто физ. исследований в фазу создания эксперим. термоядерного реактора.

Лит.: Арцимович Л. А., Управляемые термоядерные реакции, 2 изд., M., 1963; Лукьянов С. Ю., Горячая плазма и управляемый ядерный синтез, M., 1975; Kadomtsev B. В., Tokamak plasma a complex physical system, L., 1992. Б. Б. Кадомцев.

Источник: www.femto.com.ua

TOKAMAK (сокр. от «тороидальная камера с магн. катушками»)- устройство для удержания высокотемпературной плазмы с помощью сильного магн. поля. Идея T. была высказана в 1950 академиками И. E. Таммом и А. Д. Сахаровым; первые эксперим. исследования этих систем начались в 1956.

Принцип устройства ясен из рис. 1. Плазма создаётся в тороидальной вакуумной камере, к-рая служит как бы единственным замкнутым витком вторичной обмотки трансформатора. При пропускании нарастающего во времени тока в первичной обмотке трансформатора 1 внутри вакуумной камеры 5 создаётся вихревое продольное элек-трич. поле. При не очень большой начальной плотности газа (обычно используется водород или его изотопы) происходит его электрич. пробой и вакуумная камера заполняется плазмой с последующим нарастанием большого продольного тока Ip. В совр. крупных T. ток в плазме составляет неск. миллионов ампер. Этот ток создаёт собственное полоидальное (в плоскости поперечного сечения плазмы) магн. поле Вq. Кроме того, для стабилизации плазмы используется сильное продольное магн. поле Вf, создаваемое с помощью спец. обмоток тороидального магн. поля. Именно комбинацией тороидального и полоидального магн. полей обеспечивается устойчивое удержание высокотемпературной плазмы (см. Тороидальные системы ),необходимое для осуществления управляемого термоядерного синтеза.

Рис. 1. Схема токамака: 1 — первичная обмотка трансформатора; 2-катушки тороидального магнитного поля; 3 — лайнер, тонкостенная внутренняя камера для выравнивания тороидального электрического поля; 4 — катушки полоидального магнитного поля; 5 — вакуумная камера; б-железный сердечник (магнитопровод).

Операционные пределы. Магн. поле T. достаточно хорошо удерживает высокотемпературную плазму, но только в определённых пределах изменения её параметров. Первые 2 ограничения относятся к току плазмы I p и её ср. плотности п, выраженной в единицах числа частиц (электронов или ионов) в 1 м 3 . Оказывается, что при заданной величине тороидального магн. поля ток плазмы не может превышать нек-рого предельного значения, иначе плазменный шнур начинает извиваться по винтовой линии и в конце концов разрушается: развивается т. н. неустойчивость срыва тока. Для характеристики предельного тока используется коэф. запаса q по винтовой неустойчивости, определяемый соотношением q = 5B j a 2 /RI p . Здесь а — малый, R — большой радиус плазменного шнура, B j — тороидальное магн. поле, I p — ток в плазме (размеры измеряются в метрах, магн. поле — в теслах, ток — в MA). Необходимым условием устойчивости плазменного шнура является неравенство q>], к-рое наз. к р и т е р и е м К р у-с к а л а — Ш а ф р а н о в а. Эксперименты показывают, что надёжно устойчивый режим удержания достигается лишь при значениях .

Для плотности имеются 2 предела — нижний и верхний. Ниж. предел по плотности связан с образованием т. н. ускоренных, или убегающих электронов. При малой плотности частота столкновений электронов с ионами становится недостаточной для предотвращения их перехода в режим непрерывного ускорения в продольном электрич. поле. Ускоренные до высоких энергий электроны могут представлять опасность для элементов вакуумной камеры, поэтому плотность плазмы выбирается настолько большой, чтобы ускоренных электронов не было. С др. стороны, при достаточно высокой плотности режим удержания плазмы вновь становится неустойчивым из-за радиационных и атомарных процессов на границе плазмы, к-рые приводят к сужению токового канала и развитию винтовой неустойчивости плазмы. Верх. предел по плотности характеризуется безразмерными параметрами My-раками M=nR/B j и Хьюгелла H=nqR/B j (здесь ср. по сечению плотность электронов n измеряется в единицах 10 20 частиц/м 3 ). Для устойчивого удержания плазмы необходимо, чтобы числа M и H не превышали нек-рых критич. значений.

Читать еще:  Sax 170 как вставить скобы

При нагреве плазмы и повышении её давления появляется ещё один предел, характеризующий максимальное устойчивое значение давления плазмы, p = n(T e +T i ), где Т е , T i -электронная и ионная темп-ры. Этот предел накладывается на величину b, равную отношению ср. давления плазмы к давлению магн. поля; упрощённое выражение для предельного значения b даётся соотношением Тройона b c =gI p /aB j , где g-числовой множитель, равный примерно 3 . 10 -2 .

Термоизоляция. Возможность нагрева плазмы до очень высоких темп-р связана с тем, что в сильном магн. поле траектории заряж. частиц выглядят как спирали, навитые на линии магн. поля. Благодаря этому электроны и ионы длительное время удерживаются внутри плазмы. И только за счёт столкновений и небольших флуктуации электрич. и магн. полей энергия этих частиц может переноситься к стенкам в виде теплового потока. Эти же механизмы определяют величину диффузионных потоков. Эффективность магн. термоизоляции плазмы характеризуется энер-гетич. временем жизни т E = W/P, где W-полное энергосодержание плазмы, a P-мощность нагрева плазмы, необходимая для поддержания её в стационарном состоянии. Величину t E можно рассматривать также как характерное время остывания плазмы, если мощность нагрева внезапно отключается. В спокойной плазме потоки частиц и тепла к стенкам камеры создаются за счёт парных столкновений электронов и ионов. Эти потоки вычисляются теоретически с учётом реальных траекторий заряж. частиц в магн. поле T. Соответствующая теория диффузионных процессов наз. неоклассической (см. Переноса процессы ).В реальной плазме T. всегда присутствуют небольшие флуктуации полей и потоков частиц, поэтому реальные уровни потоков тепла и частиц обычно значительно превышают предсказания неоклассич. теории.

Эксперименты, проведённые на многих T. разл. формы и размеров, позволили суммировать результаты исследований механизмов переноса в виде соответствующих эм-пирич. зависимостей. В частности, были найдены зависимости энергетич. времени жизни т E от осн. параметров плазмы для разл. мод удержания. Эти зависимости наз. с к е й л и н г а м и; они успешно используются для предсказания параметров плазмы во вновь вводимых в строй установках.

Самоорганизация плазмы. В плазме T. постоянно имеются слабонелинейные колебания, к-рые влияют на профили распределения темп-ры, плотности частиц и плотности тока по радиусу, как бы управляют ими. В частности, в центр. области плазменного шнура очень часто присутствуют т. н. пилообразные колебания, отражающие периодически повторяющийся процесс постепенного обострения и затем резкого уплощения профиля темп-ры. Пилообразные колебания предотвращают контракцию тока к магн. оси тора (см. Контракция газового разряда). Кроме того, в T. время от времени возбуждаются винтовые моды (т. н. т и р и н г-м о д ы), к-рые вне шнура наблюдаются в виде низкочастотных магн. колебаний. Тиринг-моды способствуют установлению более устойчивого распределения плотности тока по радиусу. При недостаточно осторожном обращении с плазмой тиринг-моды могут нарасти настолько, что вызываемые ими возмущения магн. поля разрушают магн. поверхности во всём объёме плазменного шнура, магн. конфигурация разрушается, энергия плазмы выбрасывается к стенкам и ток в плазме прекращается из-за её сильного охлаждения (см. Тиринг-неустойчивости).

Кроме этих объёмных колебаний существуют моды колебаний, локализованные на границе плазменного шнура. Эти моды очень чувствительны к состоянию плазмы на самой периферии, их поведение усложнено атомарными процессами. Внеш. и внутр. моды колебаний могут сильно влиять на процессы переноса тепла и частиц, они приводят к возможности перехода плазмы из одного режима магн. термоизоляции в другой и обратно. Если в плазме T. распределение частиц по скоростям сильно отличается от распределения Максвелла, то возникает возможность для развития кинетич. неустойчивостей. Напр., при рождении большого кол-ва убегающих электронов развивается т. н. веерная неустойчивость, приводящая к трансформации продольной энергии электронов в поперечную. Кинетич. неустойчивости развиваются также при наличии ионов с высокой энергией, возникающих при дополнит. нагреве плазмы.

Нагрев плазмы. Плазма любого T. автоматически подогревается за счёт джоулева тепла от протекающего по ней тока. Джоулева энерговыделения достаточно для получения темп-ры в неск. млн. градусов. Для целей управляемого термоядерного синтеза нужны темп-ры >10 8 К, поэтому все крупные T. дополняются мощными системами нагрева плазмы. Для этого используются либо эл—магн. волны разл. диапазонов, либо прямая инжекция быстрых частиц в плазму. Для высокочастотного нагрева плазмы удобно использовать резонансы, к-рые отвечают внутр. колебат. процессам в плазме. Напр., нагрев ионной компоненты удобно осуществлять в диапазоне гармоник циклотронных частот либо осн. ионов плазмы, либо специально подобранных ионов-присадок. Нагрев электронов осуществляется при электронно-циклотронном резонансе.

При нагреве ионов с помощью быстрых частиц обычно используются мощные пучки нейтральных атомов. Такие пучки не взаимодействуют с магн. полем и проникают глубоко внутрь плазмы, там они ионизуются и захватываются магн. полем T.

С помощью дополнит, методов нагрева темп-ру плазмы T. удаётся поднять >3·10 8 К, что вполне достаточно для протекания мощной термоядерной реакции. В будущих разрабатываемых T.-реакторах нагрев плазмы будет осуществляться высокоэнергетичными альфа-частицами, возникающими при реакции слияния ядер дейтерия и трития.

Стационарный токамак. Обычно ток в плазме протекает только при наличии вихревого электрич. поля, создаваемого за счёт увеличения магн. потока в индукторе. Индукционный механизм поддержания тока ограничен во времени, так что соответствующий режим удержания плазмы является импульсным. Однако импульсный режим не является единственно возможным, нагрев плазмы может использоваться и для поддержания тока, если наряду с энергией в плазму передаётся и импульс, разный для разных компонент плазмы. Неиндукционное поддержание тока облегчается за счёт генерации тока самой плазмой при её диффузионном расширении к стенкам (бутстрэп-эффект). Бутстрэп-эффект был предсказан неоклассич. теорией и подтверждён затем экспериментально. Эксперименты показывают, что плазма T. может удерживаться стационарно, и гл. усилия по практич. освоению стационарного режима направлены на повышение эффективности поддержания тока.

Дивертор, управление примесями. Для целей управляемого термоядерного синтеза требуется очень чистая плазма на основе изотопов водорода. Чтобы ограничить примесь др. ионов в плазме, в ранних T. плазма ограничивалась т. н. л и м и т е р о м (рис. 2, а), т. е. диафрагмой, не допускающей соприкосновения плазмы с большой поверхностью камеры. В совр. T. используется гораздо более сложная диверторная конфигурация (рис. 2, б), создаваемая катушками полоидального магн. поля. Эти катушки необходимы даже для плазмы круглого сечения: с их помощью создаётся вертикальная компонента магн. поля, к-рая при взаимодействии с осн. током плазмы не позволяет плазменному витку выброситься на стенку по направлению большого радиуса. В диверторной конфигурации витки полоидального магн. поля расположены так, чтобы сечение плазмы было вытянуто в вертикальном направлении. При этом замкнутые магн. поверхности сохраняются только внутри сепаратрисы, снаружи её силовые линии уходят внутрь диверторных камер, где происходит нейтрализация потоков плазмы, вытекающих из осн. объёма. В диверторных камерах удаётся смягчить нагрузку от плазмы на диверторные пластины за счёт дополнит. охлаждения плазмы при атомарных взаимодействиях.

Рис. 2. Поперечный разрез плазмы круглого сечения (а)и вертикально вытянутого с образованием диверторной конфигурации (6): 1-плазма; 2- лимитер; 3 — стенка камеры; 4 — сепаратриса; 5 -диверторная камера; 6 — ди-верторные пластины.

Токамак-реактор. Гл. целью исследований на установках T. является освоение концепции магн. удержания плазмы для созданий термоядерного реактора. На T. удаётся создать устойчивую высокотемпературную плазму с темп-рой и плотностью, достаточными для термоядерного реактора; установлены закономерности для термоизоляции плазмы; осваиваются методы поддержания тока и управления уровнем примесей. Работы на T. переходят из фазы чисто физ. исследований в фазу создания эксперим. термоядерного реактора.

Лит.: Арцимович Л. А., Управляемые термоядерные реакции, 2 изд., M., 1963; Лукьянов С. Ю., Горячая плазма и управляемый ядерный синтез, M., 1975; Kadomtsev B. В., Tokamak plasma a complex physical system, L., 1992. Б. Б. Кадомцев.

Источник: www.femto.com.ua

Получение плазмы

Способ создания плазмы путем обычного нагрева вещества — не самый распространенный. Чтобы получить термическим путем полную ионизацию плазмы большинства газов, нужно нагреть их до температур в десятки и даже сотни тысяч градусов. Только в парах щелочных металлов (таких, например, как калий, натрий или цезий) электрическую проводимость газа можно заметить уже при 2000-3000°С, это связано с тем, что в атомах одновалентных щелочных металлов электрон внешней оболочки гораздо слабее связан с ядром, чем в атомах других элементов периодической системы элементов (т.е. обладает более низкой энергией ионизации). В таких газах при указанных выше температурах число частиц, энергия которых выше порога ионизации, оказывается достаточным для создания слабоионизованной плазмы.

Общепринятым способом получения плазмы в лабораторных условиях и технике является использование электрического газового разряда. Газовый разряд представляет собой газовый промежуток, к которому приложена разность потенциалов. В промежутке образуются заряженные частицы, которые движутся в электрическом поле, т.е. создают ток. Для поддержания тока в плазме нужно, чтобы отрицательный электрод (катод) испускал в плазму электроны. Эмиссию электронов с катода можно обеспечивать различными способами, например нагреванием катода до достаточно высоких температур (термоэмиссия), либо облучением катода каким-либо коротковолновым излучением (рентгеновские лучи, g-излучение), способным выбивать электроны из металла (фотоэффект). Такой разряд, создаваемый внешними источниками, называется несамостоятельным.

К самостоятельным разрядам относятся искровой, дуговой и тлеющий разряды, которые принципиально отличаются друг от друга по способам образования электронов у катода или в межэлектродном промежутке. Искровой разряд обычно оказывается прерывистым даже при постоянном напряжении на электродах. При его развитии возникают тонкие искровые каналы (стримеры), пронизывающие разрядный промежуток между электродами и заполненные плазмой. Пример одного из наиболее мощных искровых разрядов являет собой молния.

В обычном дуговом разряде, который реализуется в довольно плотном газе и при достаточно высоком напряжении на электродах, термоэмиссия с катода возникает чаще всего от того, что катод разогревается падающими на него газовыми ионами. Дуговой разряд, возникающий в воздухе между двумя накаленными угольными стержнями, к которым было подведено соответствующее электрическое напряжение, впервые наблюдал в начале 19 в. русский ученый В.В. Петров. Ярко светящийся канал разряда принимает форму дуги благодаря действию архимедовых сил на сильно нагретый газ. Дуговой разряд возможен и между тугоплавкими металлическими электродами, с этим связаны многочисленные практические применения плазмы дугового разряда в мощных источниках света, в электродуговых печах для плавки высококачественных сталей, при электросварке металлов, а также в генераторах непрерывной плазменной струи — так называемых плазмотронах. Температура плазменной струи может достигать при этом 7000-10 000 К.

Читать еще:  Какой краскопульт лучше для водоэмульсионной краски

Различные формы холодного или тлеющего разряда создаются в разрядной трубке при низких давлениях и не очень высоких напряжениях. В этом случае катод испускает электроны по механизму так называемой автоэлектронной эмиссии, когда электрическое поле у поверхности катода просто вытягивает электроны из металла. Газоразрядная плазма, простирающаяся от катодного до анодного участков, а некотором расстоянии от катода образует положительный столб, отличающийся от остальных участков разряда относительным постоянством по длине характеризующих его параметров (например, напряженности электрического поля). Светящиеся рекламные трубки, лампы дневного света, покрытые изнутри люминофорами сложного состава, представляют собой многочисленные применения плазмы тлеющего разряда. Тлеющий разряд в плазме молекулярных газов (например, СО и СО2) широко используется для создания активной среды газовых лазеров на колебательно-вращательных переходах в молекулах.

Сам процесс ионизации в плазме газового разряда неразрывно связан с прохождением тока и носит характер ионизационной лавины. Это означает, что появившиеся в газовом промежутке электроны за время свободного пробега ускоряются электрическим полем и перед столкновением с очередным атомом набирают энергию, достаточную для того, чтобы ионизовать атом, т.е. выбить еще один электрон). Таким способом происходит размножение электронов в разряде и установление стационарного тока.

В тлеющих газовых разрядах низкого давления степень ионизации плазмы (т.е. отношение плотности заряженных частиц к общей плотности составляющих плазму частиц), как правило, мала. Такая плазма называется слабоионизованной. В установках управляемого термоядерного синтеза (УТС) используется высокотемпературная полностью ионизованная плазма изотопов водорода: дейтерия и трития. На первом этапе исследований по УТС плазма нагревалась до высоких температур порядка миллионов градусов самим электрическим током в так называемых самосжимаемых проводящих плазменных шнурах (омический нагрев). В тороидальных установках магнитного удержания плазмы типа токамак удаетсянагреть плазму до температур порядка десятков и даже сотен миллионов градусов с помощью впрыскивания (инжекции) в плазму высокоэнергетических пучков нейтральных атомов. Другой способ состоит в использовании мощного микроволнового излучения, частота которого равна ионной циклотронной частоте (т.е. частоте вращения ионов в магнитном поле) — то нагрев плазмы методом так называемого циклотронного резонанса.

Источник: studwood.ru

Как создать плазменный тороид

Каталог магнитов

Магнитное удержание плазмы

Расскажем сегодня о магнитном удержании плазмы.

ПЛАЗМА – частично или полностью ионизованный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Газ переходит в состояние плазмы, если некоторые из составляющих его атомов (молекул) по какой-либо причине лишились одного или нескольких электронов, т.е. превратились в положительные ионы. В некоторых случаях в плазме в результате «прилипания» электронов к нейтральным атомам могут возникать и отрицательные ионы. Если в газе не остается нейтральных частиц, плазма называется полностью ионизованной.

Одна из важных особенностей плазмы в том, что отрицательный заряд электронов в ней почти точно нейтрализует положительный заряд ионов. При любых воздействиях на нее плазма стремится сохранить свою квазинейтральность. Если в каком-то месте происходит случайное смещение (например, за счет флуктуации плотности) части электронов, создающее избыток электронов в одном месте и недостаток в другом, в плазме возникает сильное электрическое поле, которое препятствует разделению зарядов и быстро восстанавливает квазинейтральность.

Плазма – четвертое состояние вещества, она подчиняется газовым законам и во многих отношениях ведет себя как газ. Вместе с тем, поведение плазмы в ряде случаев, особенно при воздействии на нее электрических и магнитных полей, оказывается столь необычным, что о ней часто говорят как о новом четвертом состоянии вещества. В 1879 английский физик В.Крукс, изучавший электрический разряд в трубках с разреженным воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвертом состоянии». Древние философы считали, что основу мироздания составляют четыре стихии: земля, вода, воздух и огонь. В известном смысле это отвечает принятому ныне делению на агрегатные состояния вещества, причем четвертой стихии – огню и соответствует, очевидно, плазма.

Магнитное удержание плазмы

Как известно, в магнитном поле заряженные частицы движутся по спиралям, «навиваясь» своими траекториями на силовые линии магнитного поля. Поэтому однородное поле сильно уменьшает диффузию и теплопроводность плазмы в направлении поперек силовых линий. Однородное поле, однако, никак не влияет на движение заряженных частиц вдоль силовых линий.

Естественный путь устранения потерь плазмы вдоль силовых линий — сворачивание плазменного шнура в тор. Но при этом магнитное поле становится неоднородным и характер движения заряженных частиц в нем усложняется возникает дрейф (медленное смещение) частиц поперек силовых линий поля. Для устранения дрейфа, а также обеспечения равновесия и устойчивости плазменного кольца используют различные комбинации внешних полей и полей, возникающих при протекании токов в самой плазме. В зависимости от структуры этих полей возможны различные виды тороидальных (или замкнутых) ловушек для плазмы: токамаки, стеллараторы и т.д.

Однако, несмотря на это, «ловушки» не являются единственной исследуемой системой магнитного удержания плазмы. Дело в том, что если рассматривать их не как устройство для удержания горячей плазмы, а как часть термоядерного реактора, то, с чисто инженерной точки зрения, он имеет весьма серьезные недостатки. Импульсный характер работы токамака порождает проблемы, связанные с «усталостью» материалов из-за циклических термических напряжений, возникающих в элементах конструкции. Кроме того, его тороидальная геометрия сама по себе обусловливает неоднородность тепловых и нейтронных нагрузок на эти элементы. Поскольку силовые линии магнитного поля в тороидальной ловушке представляют собой окружности, можно ожидать центробежный дрейф частиц к стенкам ловушки. Кроме того, в силу принятой геометрии установки, витки с током располагаются на внутренней окружности тора ближе друг к другу, чем на внешней, поэтому индукция магнитного поля увеличивается по направлению от внешней стенки тора к внутренней, что очевидным образом приводит к градиентному дрейфу частиц к стенкам ловушки. Оба вида дрейфа частиц вызывают движение зарядов противоположного знака в разные стороны, в результате вверху образуется избыток отрицательных зарядов, а внизу – положительных.

С тороидальной геометрией связаны головоломные проблемы, которые придется решать при дистанционной разборке и других ремонтных работах на радиоактивной установке, активированной нейтронами.

Наконец, для экономики реакторных систем очень важно, чтобы удержание плазмы осуществлялось как можно более слабым магнитным полем. Коэффициент использования магнитного поля в каждой данной системе удержания можно характеризовать величиной, равной отношению давления плазмы к давлению внешнего магнитного поля, определяемому как В2/8я, где В — магнитная индукция. Другой способ, также позволяющий компенсировать дрейф плазмы в тороидальной ловушке, состоит в возбуждении вдоль тора электрического тока прямо по плазме. Систему с кольцевым током назвали токамак (от слов «токовая камера», «магнитные катушки»).

Существуют и другие идеи магнитного удержания плазмы. Одна из них заключается, например, в создании ловушек с магнитными «пробками» или так называемых «пробкотронов». В таких устройствах силовые линии продольного магнитного поля, сгущаются по направлению к торцам цилиндрической камеры, в которой находится плазма, напоминая своей формой горлышко бутылки . Уходу заряженных частиц на стенки поперек продольного магнитного поля препятствует их закручивание вокруг силовых линий. Нарастание магнитного поля к торцам обеспечивает выталкивание циклотронных кружков в область более слабого поля, что и создает эффект магнитных «пробок». Магнитные «пробки» называют иногда магнитными зеркалами, от них, как от зеркала, отражаются заряженные частицы.

Диффузия плазмы поперек магнитного поля. Предыдущий анализ поведения заряженных частиц в магнитном поле основывался на предположении об отсутствии столкновений частиц между собой. В действительности же частицы, конечно, взаимодействуют между собой, их столкновения приводят к тому, что они перескакивают с одной линии индукции на другую, т.е. перемещаются поперек силовых линии магнитного поля. Такое явление называют поперечной диффузией плазмы в магнитном поле. Анализ показывает, что скорость поперечной диффузии частиц уменьшается с увеличением магнитного поля (обратно пропорционально квадрату величины магнитной индукции B), а также с возрастанием температуры плазмы. Однако, на самом деле процесс диффузии в плазме оказывается более сложным.

Основную роль в поперечной диффузии плазмы играют столкновения электронов с ионами, при этом ионы, которые движутся вокруг силовых линий по окружностям большего радиуса, чем электроны, в результате столкновений «легче» переходят на другие силовые линии, т.е диффундируют поперек силовых линий быстрее, чем электроны. Из-за различной скорости диффузии частиц противоположного знака происходит разделение зарядов, которому препятствуют возникающие сильные электрические поля. Эти поля практически устраняют возникшую разницу в скоростях движения электронов и ионов, в результате чего наблюдается совместная диффузия разноименно заряженных частиц, которая называется амбиполярной диффузией. Такая диффузия поперек магнитного поля является также одной из важных причин ухода частиц на стенки в устройствах магнитного удержания плазмы.

Заметим, что если первый из указанных недостатков может быть, по-видимому, в будущем устранен, то два других представляют собой, так сказать, врожденные. Поэтому никогда не прекращался поиск систем магнитного удержания, свободных от этих недостатков, т.е. обеспечивающих непрерывную работу, имеющих линейную геометрию и устойчиво удерживающих плотную плазму в относительно слабых магнитных полях . В настоящее время основным соперником токамаков среди систем с магнитным удержанием вновь становятся открытые магнитные ловушки, изучение которых началось еще на заре термоядерных исследований.

Источник: magnet-prof.ru

Ссылка на основную публикацию
Adblock
detector