Как рассчитать массу детали по чертежу

Как рассчитать массу детали по чертежу

Припуски на механическую обработку

Припуски на механическую обработку наносят на чертеж там, где стоят знаки механической обработки ().

Припуски назначаются на посадочные внутренние цилиндрические поверхности, а также на торцевые поверхности. На чертеже 2.2 припуски указаны сплошными тонкими линиями.

Величина припусков зависит от габаритных размеров обрабатываемой поверхности, и от положения ее при заливке. Величину припуска на отверстия определяем по таблице 4. Припуски на нижние и боковые поверхности — 1 мм, на верхние — 1,5 мм. Припуски на верхние поверхности увеличены из-за неметаллических включений, пузырьков газа, всплывающих на поверхность жидкого металла.

Правильное определение величины припусков (zi) очень важно, так как от этого зависят многие технико-экономические показатели технологического процесса (расход металла, точность и качество обработанных поверхностей, время обработки, расходы на режущий инструмент, электроэнергию, амортизацию станка и др.).

В современной технологии машиностроения, особенно при значительном объеме выпуска деталей, необходимо, чтобы припуск на каждых технологический переход был минимальным, но достаточным для осуществления предполагаемой обработки.

В практике технологов-машиностроителей используют два метода выполнения работы по установлению величины операционных припусков: табличный и расчетно-аналитический, причем каждый из них находит применение в определенных производственных условиях. В данной работе использован табличный метод определения припусков на обработку.

Рассчитаем припуск на внутреннее отверстие диаметром (0,017).

Источник: vuzlit.ru

Калькулятор массы

Для различных изделий сложной формы и профиля, с наличием прорезей и отверстий очень трудно рассчитать вес, а это очень важный момент – для транспортировки, для расчета монтажных параметров, для конструкторской документации и других целей. Процесс взвешивания также представляет собой сложности, особенно, когда изделия крупногабаритные – например, трубы, валы, турбины, металлические или деревянные конструкции, изделия из бетона и железобетона и т.д., или же вес небольшой детали, но сложной конфигурации.

Но, узнать точную массу таких изделий можно гораздо проще на нашем сайте

Мы предлагаем Вашему вниманию универсальный интерактивный калькулятор массы для самостоятельного расчета массы изделий самой разной формы из материалов цилиндрической или листовой формы. Его особенность в том, что он позволяет узнать вес детали или изделия не только из металлопроката и сплавов, но и любых других материалов: дерева и МДФ, пластиков и полимеров, бумаги, картона, резины, бетона, кирпича. Сделать это можно просто внеся габаритные показатели детали с вычетом размеров отверстий и прорезей, а также, величину коэффициента плотности материала, из которого деталь изготовлена. Точные данные можно найти в представленной рядом таблице.

Диаметр Длина Плотность
мм мм кг/мм 3
Масса общая
кг
Диаметр Длина
мм мм
Диаметр Длина
мм мм
Длина Ширина Толщина Плотность
мм мм мм кг/мм 3
Масса общая
кг
Длина Ширина
мм мм
Длина Ширина Количество
мм мм шт
Диаметр Количество
мм шт

Масса цилиндрической детали рассчитывается следующим образом:

• В соответствующие поля калькулятора массы внести размерные показатели: диаметр, длину и справочную плотность материала – калькулятор рассчитает общую массу изделия.
• Второй шаг – если на изделии есть выступы, ступени – надо добавить их габариты.
• И третий шаг – вычесть размеры отверстий, выемок, прорезей.
• Результат – точная расчетная масса цилиндрической детали.

Масса детали из листа рассчитывается следующим образом:

• В соответствующие поля калькулятора массы внести размерные показатели: ширину, длину, толщину и справочную плотность материала – калькулятор рассчитает общую массу изделия.
• Второй шаг – если на изделии есть выступы – надо добавить их габариты.
• И третий шаг – вычесть размеры прямоугольных или круглых отверстий.
• Результат – точная расчетная масса детали из листа.

Наш калькулятор массы изделий будет полезен как конструктору, так и для заказчиков, ведь он позволяет очень быстро и почти со 100%-точностью получить необходимые данные относительно веса изделия без сложных математических расчетов и процедуры взвешивания.

Обратите внимание, что по умолчанию в калькуляторе стоит масса марки стали 40 ГОСТ 1050-88.

Источник: azmen.a-idea.ru

Как правильно и быстро подсчитать вес металлопроката – с таблицами и без них

Вопрос подсчёта веса металлопроката актуален не только для специалистов, но и частных застройщиков и домашних умельцев. При наличии под рукой справочника и, тем более, он-лайн металлокалькулятора произвести соответствующие расчёты несложно. А если у вас с собой есть только рулетка и калькулятор на телефоне? Точные результаты с таким арсеналом получить сложно, но приблизительно определиться с весом некоторых металлоизделий – вполне реально.

Считаем вес листового проката

Определение! Во всех наших расчётах базовой величиной является усреднённая плотность стали – 7 850 кг/м3 по системе СИ.

Проведём для начала несложное действие – узнаем массу квадратного метра стального листа толщиной 1 мм. Выглядит это так – 1 м х 1 м х 0,001 м х 7850 кг/м3. То есть, мы перемножили длину, ширину и толщину листа (все величины взяли в метрах), и получили объём изделия. Произведение объёма и плотности даёт массу – 7,85 кг. Таким образом, мы выяснили, что метр квадратный стального листа толщиной 1 мм весит 7,85 кг.

А далее все вычисления производят умножением величины 7,85 кг на площадь и толщину реального листа. Например, вам надо купить лист толщиной 4 мм и площадью 2 м2. Массу такого изделия определяют по формуле 7,85х4х2= 62,8 кг. Лист такого же размера, но толщиной 2 мм весит 7,85х2х2=31,4 кг.

Если вас устраивает приблизительный расчёт – округлите значение 7,85 кг до 8 кг. Тогда вычисления можно проводить даже в уме без калькулятора, а погрешность составит менее 2%.

Приведём веса стальных листов наиболее популярных размеров.

Толщина листа, мм Размеры листа, м Вес листа, кг Вес 1 м 2 , кг
0,35 1,0х2,0 5,5 2,75
0,35 1,25х2,5 8,59
0,5 1,0х2,0 7,85 3,93
0,5 1,25х2,5 12,27
0,8 1,0х2,0 12,56 6,28
0,8 1,25х2,5 19,63
1,0 1,0х2,0 15,7 7,85
1,0 1,25х2,5 24,53
1,5 1,0х2,0 23,55 11,78
1,5 1,25х2,5 36,8
2,0 1,0х2,0 31,4 15,7
2,0 1,25х2,5 49,06
2,5 1,0х2,0 39,25 19,63
2,5 1,25х2,5 61,33
3,0 1,0х2,0 47,1 23,55
3,0 1,25х2,5 73,59
3,5 1,25х2,5 85,86 27,48
4,0 1,5х6,0 282,6 31,4
5,0 1,5х6,0 353,25 39,25
Читать еще:  Как проверить двигатель вытяжки

Что такое переводной коэффициент

Усложним задачу. Предположим, вам надо купить лист из цветного металла. Воспользуемся переводным коэффициентом, который представляет собой отношение плотности конкретного металла или сплава к усреднённому значению плотности стали. Путём умножения веса стального изделия определённого сортамента и размера на коэффициент нужного металла или сплава получаем вес детали.

Наименование металла или сплава Коэффициент
Алюминий 0,34
Медь 1,14
Латунь ЛС59 1,08
Бронза ОЦС 5-5-5 1,12
Чугун серый 0,9

Пример – рассчитаем массу бронзового листа толщиной 2 мм и площадью 2 м2.

7,85х2х2х1,12 = 35,2 кг

Внимание! Этот же простой алгоритм можно применять и для неметаллических листовых материалов, для которых также существуют переводные коэффициенты. Например, для резины – 0,17-0,23, органического стекла – 0,15, капролона – 0,15, текстолита – 0,18, резины – 0,17-0,23.

Как узнать массу трубы

Для определения массы труб оптимально воспользоваться таблицами.

Условный проход, дюйм/мм Толщина стенки, мм Вес, кг Условный проход, дюйм/мм Толщина стенки, мм Вес, кг
1/4 (8) 2,35 0,65 1 1/4 (32) 3,25 3,14
1/2 (15) 2,65 1,22 1 1/2 (40) 3,25 3,61
3/4 (20) 2,65 1,58 2 (50) 3,65 5,1
1 (25) 3,25 2,44 2 1/2 (65) 3,65 6,51

Если же доступа к справочным материалам нет, а несложные геометрические формулы не являются для вас препятствием, вычислите вес самостоятельно. Для этого находим разницу площади круга по внешнему радиусу и площади по внутреннему радиусу. Полученную разность умножаем на длину трубы и плотность стали – 7 850 кг/м3.

Для труб из цветных металлов применяют переводные коэффициенты, о которых мы говорили выше.

Как узнать массу цилиндра при помощи таблиц для прутка круглого сечения

Если у вас есть доступ к таблицам подсчёта массы кругляка, то очень просто определить массу цилиндра с любой толщиной стенки. Для этого найдите вес 1 м прутка по внешнему диаметру цилиндра и вычитайте из него вес 1 м прутка по внутреннему диаметру. Полученный результат умножьте на высоту цилиндра (в метрах). Масса цилиндра найдена.

Как рассчитать массу равнополочного уголка, швеллера, двутавра

Масса метра погонного углового металлопроката зависит от ширины и толщины полок.

Внимание! Рассчитанный по геометрической формуле или определённый по таблице вес уголка может сильно отличаться от фактического. Это связано с тем, что некоторые производители в целях удешевления продукции снижают толщину полки уголка в местах, где не предусматриваются проверочные замеры. Такая разница может значительно превышать допуски, предусмотренные ГОСТом.

Вес погонного метра наиболее распространённого сортамента равнополочного уголка

Ширина полки, мм Толщина полки, мм Вес 1 м уголка, кг Ширина полки, мм Толщина полки, мм Вес 1 м уголка, кг
20 3 0,89 40 3 1,85
20 4 1,15 40 4 2,42
25 3 1,12 45 3 2,08
25 4 1,46 45 4 2,73
32 3 1,46 50 3 2,32
32 4 1,91 50 4 3,05
36 3 1,65 63 4 3,9
36 4 2,16 63 5 4,81

Самостоятельно просчитать массу швеллера и двутавра затруднительно из-за сложной формы сечения. В данном случае пользуются таблицами.

Таблица весов швеллера

Номер профиля Вес 1 м, кг Номер профиля Вес 1 м, кг Номер профиля Вес 1 м, кг
5 4,84 12 10,4 20 18,4
6,5 5,9 14 12,3 22 21,0
8 7,05 16 14,2 24 24 ,0
10 8,59 18 16,3 27 27,7

Таблица весов двутавра

Номер профиля Вес 1 м, кг Номер профиля Вес 1 м, кг Номер профиля Вес 1 м, кг
10 9,46 18 18,4 27 31,5
12 11,5 20 21,0 30 36,5
14 13,7 22 24,0 33 42,2
16 15,9 24 27,3 36 48,6

Калькуляторы расчёта веса металла

Если у вас есть доступ к интернету – расчёты массы металлопроката не составляют никакого труда. Калькулятором металла можно пользоваться в режиме он-лайн или скачать его на компьютер.

Как выполняется расчёт:

  • В списке выбирают тип металлопроката.
  • Заполняют данные в размерности, указанной в программе.
  • Нажимают кнопку расчёта.
  • В калькуляторах также обычно указывают массу погонного метра конкретного сортамента и количество метров в тонне.

Внимание! Все данные, предоставляемые металлокалькуляторами, основаны на ГОСТ. При отсутствии табличных величин масса рассчитывается по геометрическим формулам с поправкой на особенности изготовления данных изделий. При стандартных подсчётах плотность стали принимается равной 7 850 кг/м3.

Реальная масса металлопроката практически всегда отличается от теоретической.

Как пользоваться справочниками

Удобным справочным материалом является сборник авторов Поливанова П.М. и Поливановой Е.П. «Таблицы для подсчёта массы деталей и материалов». В справочнике представлены таблицы, позволяющие легко и быстро определить массу проката круглого, прямоугольного, шестиугольного сечений, листа и полосы, равнополочной и неравнополочной угловой стали, двутавра, швеллера, круглых и профильных труб.

В сборнике даны формулы, по которым можно рассчитать площади и объёмы геометрических фигур. Подробная таблица переводных коэффициентов позволяет точно подсчитать массу цветного металла или его сплава.

Приближёнными методиками расчётов можно воспользоваться только для предварительного определения массы материалов, изделий и конструкций. Для составления проектной документации применяют только точные данные, полностью соответствующие ГОСТ.

Источник: www.navigator-beton.ru

Определение МАССЫ детали по ее чертежу

Читайте также:

  1. I. Воспаление. Определение понятия
  2. I. Определение ленинизма
  3. I. Определение терминов и предмет исследования
  4. I. Тромбоз. Определение
  5. I.Определение количества потребителей
  6. II. Определение общих черт
  7. II. Определение оптимального соотношения финансовых возможностей муниципальных образований и публичных полномочий, реализациях которых целесообразна на местном уровне.
  8. II. Субтест — «Определение общих черт» (GE).
  9. III. Определение оптимального уровня денежных средств.
  10. IX. ОПРЕДЕЛЕНИЕ ПОБЕДИТЕЛЕЙ.
  11. VII. Определение IgE
  12. Аксиоматическое определение вероятности
Читать еще:  Как почистить медный таз в домашних условиях

Масса детали определяется

где V – объем детали, r ‑ плотность материала из которого изготовлена данная деталь.

Таким образом, для определения массы детали необходимо определить объем детали. Для этого разбиваем деталь на фигуры, для которых можно определить объем детали по известным формулам (табл. 2.1)

Наим. Наглядное изображение Эскиз Объем
Цилиндр
Призма V = аbc
Пирамида площадь основания

Продолжение табл. 2.1

Полый цилиндр
Косо срезанный цилиндр
Шар
Шаровой сектор
Шаровой сегмент

Продолжение табл. 2.1

Конус
Усеченная пирамида , где f1 и f2 – площади оснований пирамиды
Усеченный конус
Бочка
Тело вращения Объем V тела вращения, образованного вращением площади F, умноженной на путь, описанный ее центром тяжести S вокруг оси радиусом r V=2prF=2prab

В качестве примера рассмотрим определение объема вала, изображенного на рис. 2.1. Разобьем вал на простые (с точки зрения вычисления объема) тела (рис. 2.2) и вычислим их объем.

1. Объем фаски (1) – усеченный конус (рис. 2.2)

,

.

2. Объем цилиндра (2)

.

3. Объем паза (3) с поперечным сечением S (рис. 2.3, а) и длиной 10 мм для призматической части паза

а б

,

.

Учтем объем цилиндра от боковых полуцилиндров паза. Примем

r =b/2 = 2,5 мм – радиус цилиндра,

h / = h + 0,5(R — ) = 3 + 0,5(6 – ‑ высота

цилиндра равная глубине паза и верхнюю часть цилиндра паза.

Тогда объем цилиндрической части шпоночного паза, получим:

Окончательно объем шпоночного паза будет

4. Объем галтели 4 с радиусом r = 1 мм (рис. 2.4).

Площадь галтели определится как разность площадей квадрата Sк = r 2 и четверти круга (сектора) Sc = pr 2 /4(рис. 2.4)

Sг = r 2 — pr 2 /4 = r 2 (4- p)/4= 1 2 (4-π)/4 = 0,22 мм 2

Рис. 2.4

Центр тяжести вдоль оси Х квадрата xК = , а четверти круга – сектора круга с углом 90º

,

Центр тяжести галтели вдоль оси X:

5. Объем лыски (рис. 2.5) 5:

Площадь сегмента Sсег. определится как разность площади сектора с углом α и площади треугольника

Находим численное значение объема лыски

6. Объем цилиндра (6)

.

7. Объем цилиндра (7,8)

,

где р= 1,5 мм – шаг резьбы.

где S=p 2 tg60 o /4, L = 2πr длина витка резьбы, n = l/p – количество витков, l ‑ длина резьбы.

V9 = 2πr p 2 tg60 o l/4p = πr ptg60 o l/2 = π5∙1,5∙1,732∙12/2 = 245 мм 3

.

Окончательно, складываем все объемы, вычитая объем лыски и шпоночного паза, получим

Массу тела получим, используя ранее приведенную формулу m = Vr.

Дата добавления: 2015-06-25 ; Просмотров: 10920 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник: studopedia.su

Определение массы изделия и массы заготовок для его изготовления.

Масса литой детали определяется по формуле

где V- объем детали,

g – плотность материала.

Если деталь сложной геометрической формы ее следует разбить на более простые по форме элементы, удобные для расчета; а затем суммировать найденные значения.

При расчете массы отливки учитывают припуски на механическую обработку.

Масса поковок определяется по формуле

где Vп- объем поковки,

g – плотность материала.

Объем поковки также находят по формуле

где Vм – объем материала идущий непосредственно на поковку и определяемый по чертежу детали,

Vу – объем металла на угар, который составляет 1-3% от массы заготовки в зависимости от метода нагрева и используемых нагревательных устройств ( мазутная печь – 2-3%, газовая печь – 1,5-2%, электрическая печь -1%).

Vз – объем металла на заусенцы.

Объем металла на заусенцы по следующей формуле

где К-коэффициент заполнения металлом облойной канавки, в зависимости от метода ковки 0,35 – 1,2.

F – площадь сечения облойной канавки,

Pп – периметр поковки по плоскости разьема штампа.

Основной отход металла (облой) составляет примерно 18-20%.

Объем заготовок простейших профилей:

Круглое сечение V = 0,78 d 2 ∙l

Квадратное V= a 2 ∙l

Квадратное с закругленными углами V = (a 2 – 0,86r 2 )∙l

Прямоугольное сечение V = b∙e∙l

Шестигранное сечение V = 0,87∙C 2 ∙l

Кольцевое сечение V = 0,78(D 2 -d 2 )∙l,

Где V – объем, l – длина, D и d – диаметры внешних и внутренних окружностей, a – сторона квадрата, r – радиус закруглений, C – диаметр вписанного в шестигранник круга, b и e – стороны прямоугольника.

Масса заготовки из проката – произведение массы одного погонного метра проката требуемого диаметра на длину заготовки с учетом припусков на механическую обработку.

Основные положения к выбору оптимальной заготовки

Для получения заготовок наиболее широко в машиностроении используют следующие методы: литье, обработка металлов давлением и сварка, а также комбинации этих методов.

Отливки получают литьем в песчано-глинистые формы, в кокиль, по выплавляемым моделям, под давлением, центробежным литьем, литьем намораживанием и т.д.; поковки и штамповки – ковкой на молотах, гидравлических и пневматических прессах, штамповкой на штамповочных молотах, на кривошипных горячештамповочных прессах, гидро-винтовых пресс-молотах, горизонтально-ковочных машинах, радиально-ковочных машинах и т.д.

Прежде всего следует, каким методом наиболее целесообразно получить заготовку для данной детали. Условимся под термином «метод» понимать группу технологических процессов, в основе которых лежит единый принцип формообразования. Например, метод обработки металлов давлением включает в себя все технологические процессы, способы, которые основаны на пластическом деформировании металла. Обычно при выборе метода надо учитывать материал и требования к нему с точки зрения обеспечения служебных свойств изделия. Если на чертеже детали указан материал чугун или марка стали с индексом «Л», то эту деталь следует изготовлять из заготовки, полученной методом литья, т.к. чугуны в большинстве своем не могут быть подвержены обработке давлением из-за низких пластических свойств. Индекс «Л» указывает на то, что сталь обладает повышенными литейными свойствами и пониженными пластическими свойствами. Особо ответственные детали изготавливают методом давления.

Требования , предъявляемые к изготовлению заготовок:

— максимальное приближение заготовок по форме и размерам к деталям;

— применение прогрессивных способов получения заготовок.

Способ получения заготовки должен быть обусловлен ее стоимостью и дальней шей обработкой. Иногда разные методы и даже способы одного метода могут надежно обеспечивать технические требования, предъявляемые к заготовке; поэтому одновременно с расчетами на прочность, необходимо сопоставлением возможных методов и способов изготовления заготовок выбрать такие из них, которые в наибольшей степени отвечают конструктивным, технологическим и экономическим требованиям.

Читать еще:  Как пользоваться холодной сваркой mastix

Основные факторы, влияющие на выбор способа получения заготовки.

А) Характер производства

Для мелкосерийного и единичного производства в качестве заготовок используют горячекатаный прокат; отливки, полученные литьем в песчано-глинистые формы и поковки, полученные ковкой. Это обуславливает большие припуски и напуски, значительный объем последующей механической обработки, повышение трудоемкости. В структуре себестоимости в данном случае велика доля затрат на основные материалы (до 50%) и зарплату (30-35%).

В условиях крупносерийного и массового производства рентабельнее горячая объемная штамповка, литье в кокиль и под давлением, в оболочковые формы и по выплавляемым моделям. Значительно сокращаются припуски на обработку, снижается трудоемкость изготовления деталей.

Б) Материалы и требования, предьявляемые к качеству деталей

Материал заготовки определяется назначением детали или изделия, их конструктивными формами, серийностью производства, техническим уровнем заготовительного производства и экономической целесообразности применения определенного способа изготовления заготовки.

До недавнего прошлого в машиностроении преобладали универсальные материалы, каждый из которых применяли при самых различных условиях работы. По мере расширения номенклатуры марок чугуна, стали и т.д., а также неметаллов, их начали выбирать в соответствии со специальными требованиями, предъявленными к работе детали. Материалы должны обладать необходимым запасом определенных технологических свойств: ковкостью, штампуемостью, жидкотекучестью, свариваемостью, обрабатываемостью.

Необходимым технологическим свойством для деформируемых материалов является технологическая пластичность. Чем ниже пластичность материала, тем сложнее получить качественную заготовку методом обработки металлов давлением, тем сложнее техпроцесс, тем выше себестоимость детали.

Особые требования к пластичности металлов предъявляются при холодной обработке металлов давлением: выдавливание, вытяжка, гибка, формовка.

Если материал обладает пониженными литейными свойствами – низкая жидкотекучесть, высокая склонность к поглощению газов и усадке и т.п., не рекомендуется заготовки из этого материала получать литьем в кокиль или под давлением, т.к. могут возникнуть литейные напряжения, корабления отливки, трещины. В таких случаях лучше применить оболочковое литье или литье в песчаноглинистые формы. Сплавы, склонные к повышенному поглощению газов нежелательно применять при литье под давлением; для центробежного литья исключено применение сплавов, склонных к ликвации.

Для ответственных ,тяжело нагруженных деталей, работающих в переменных нагрузках в качестве заготовок используют поковки, при этом значительно повышаются физико-механические свойства материала.

В) Размеры, масса и конфигурация детали

При конструировании изделий необходимо ориентироваться на определенный способ изготовления и предпочитать такие конструктивные формы и элементы деталей, которые наиболее полно соответствуют выбранному способу изготовления деталей, обеспечивая высокие показатели производительности, экономичности и точности.

Удельная стоимость отливок и поковок растет с уменьшением их массы, особенно резко при массе до 20 кг (т.к. трудоемкость формообразования определяют общей площадью поверхностей, подлежащих обработке).

Уменьшение материалоемкости изделия – основной фактор повышения экономичности машиностроительного производства. Затраты на материалы составляют от 20 до 65% себестоимости детали.

Обработку резанием нужно применять как можно меньше, она оправдана при выполнении небольшого объема работ и отделочных операций, а также для повышения качества поверхностей и точности размеров.

Для многих способов литья размеры отливки ограничены техническими возможностями оборудования, поэтому размеры деталей при выборе способа получения заготовок играют решающую роль.

Г)Качество поверхности заготовок, обеспечение заданной точности.

Использование точных прецизионных способов получения заготовок обеспечивает достаточную чистоту поверхности и высокую точность заготовок. Так совершенствование процессов ковки и штамповки позволяет получать заготовки, параметры шероховатости поверхности и точность размеров которых соответствует достигаемым при механической обработке, а в отдельных случаях при финишных операциях (при полировании).

Специальные виды штамповки (калибровка, холодное выдавливание) обеспечивают получение готовых деталей (заклепки, гайки, болты) и деталей машин, пригодных для сборки без дополнительной обработки резанием. Большинство специальных видов литья ( литье в кокиль, в оболочковые формы, под давлением, по выплавляемым моделям, жидкая штамповка и др.) позволяют получить достаточно точные отливки с точностью размеров до 12-15 квалитета и параметром шероховатости Rа = 6,3 – 3,2 мкм.

Д) Возможности имеющегося оборудования

Возможности имеющегося оборудования следует учитывать при изготовлении заготовок центробежным литьем, литьем под давлением, горячей объемной штамповкой и др. Особенно необходимо учитывать возможности оборудования при выборе способа получения заготовок обработкой металлов давлением. Наличие в кузнечном цехе ротационно-ковочных машин позволяет получать ступенчатую заготовку практически без механической обработки; такого же эффекта можно добиться при наличии механических прессов двойного действия или гидравлических много ступенчатых прессов, предназначенных для штамповки деталей в разъемных матрицах. При наличии чеканочных прессов после горячей объемной штамповки можно использовать чеканку (калибровку) как отделочную операцию, что позволит значительно уменьшить припуск на механическую обработку.

Пример. Выбрать заготовку для детали типа фланец с отверстием из стали 40ХЛ, масса готовой детали – 25 кг, большинство поверхностей с шероховатостью Rа = 10 – 2,5мкм, точность размеров 13-14 квалитет. Годовая программа выпуска – 50 000шт.

В данном случае это литье, т.к. задана литейная марка стали. Определяем способ литья. Т.к. масса детали – 25кг, годовая программа выпуска — 50000шт, производство – массовое. Здесь целесообразно использовать специальные способы литья, обеспечивающие заданную точность, шероховатость, размеры. Это литье в кокиль, в оболочковые формы, по выплавляемым моделям и под давлением. Литье под давлением исключаем – не нашел широкого применения при литье стальных заготовок из-за низкой стойкости литейной оснастки. По той же причине нежелательно литье в кокиль ( стойкость кокиля не превышает 500 шт.)

Литье по выплавляемым моделям дорого и трудоемко, его применяют в тех случаях, когда нельзя получить заготовку другими способами. Значит, остается литье в оболочковые формы.

Эта методика выбора очень не точна, поэтому необходим технико-экономический сравнительный анализ выбора заготовки.

Источник: lektsia.com

Ссылка на основную публикацию
Adblock
detector