Как найти индуктивность катушки формула

Как найти индуктивность катушки формула

Подобно тому, как обладающее массой тело в механике сопротивляется ускорению в пространстве, проявляя инерцию, так же и индуктивность препятствует изменению тока в проводнике, проявляя ЭДС самоиндукции. Именно ЭДС самоиндукции противится как уменьшению тока, стремясь поддержать его, так и возрастанию тока, стремясь его уменьшить.

Дело в том, что в процессе изменения (увеличения или уменьшения) тока в контуре, изменяется и создаваемый этим током магнитный поток, локализованный главным образом в ограниченной данным контуром области. А раз магнитный поток возрастает или уменьшается, то он и наводит ЭДС самоиндукции (по правилу Ленца — против причины его вызывающей, то есть против упомянутого вначале тока) все в этом же контуре. А индуктивностью L здесь называют коэффициент пропорциональности между током I и полным магнитным потоком Ф, этим током порождаемым:

Итак, чем выше индуктивность контура — тем сильнее он, возникающим магнитным полем, препятствует изменению тока (это самое поле и создающему), и значит на изменение тока через бОльшую индуктивность, при одном и том же приложенном напряжении, потребуется больше времени. Верно и такое утверждение: чем выше индуктивность — тем большее напряжение возникнет на концах контура при изменении магнитного потока сквозь него.

Допустим, мы изменяем магнитный поток в определенной области с постоянной скоростью, тогда охватывая эту область разными контурами, большее напряжение получим на том контуре, индуктивность которого больше (на этом принципе работает трансформатор, катушка Румкорфа и т.д.).

Но как же рассчитать индуктивность контура? Как найти коэффициент пропорциональности между током и магнитным потоком? Первым делом вспомним, что индуктивность изменяется в Генри (Гн). На выводах контура индуктивностью 1 генри, если ток в нем изменить на один ампер за секунду, возникнет напряжение 1 вольт.

Величина индуктивности зависит от двух параметров: от геометрических размеров контура (длина, ширина, количество витков и т. д.) и от магнитных свойств среды (если например внутри катушки есть ферритовый сердечник — индуктивность ее будет больше, нежели если сердечника внутри нет).

Для расчета изготавливаемой индуктивности необходимо знать, какой формы будет сама катушка, и какой магнитной проницаемостю будет обладать среда внутри нее (относительная магнитная проницаемость среды — это коэффициент пропорциональности между магнитной проницаемостью вакуума и магнитной проницаемостью данной среды. Для разных материалов она, конечно, разная).

Давайте рассмотрим формулы для расчета индуктивностей наиболее распространенных форм катушек (цилиндрический соленоид, тороид и длинный проводник).

Вот формула для расчета индуктивности соленоида — катушки, у которой длина значительно превосходит диаметр:

Как видно, зная количество витков N, длину намотки l и площадь сечения катушки S, найдем приблизительную индуктивность катушки без сердечника или с сердечником, при этом магнитная проницаемость вакуума есть величина постоянная:

Индуктивность тороидальной катушки, где h – высота тороида, r – внутренний диаметр тороида, R – наружный диаметр тороида:

Индуктивность тонкого проводника (радиус сечения сильно меньше длины), где l — длина проводника, а r – радиус его сечения. Мю с индексами i и e – относительные магнитные проницаемости внутренней (internal, материал проводника) и внешней (external, материал снаружи проводника) сред:

Таблица относительных магнитных проницаемостей поможет вам прикинуть, какой индуктивности можно ожидать от контура (проводника, катушки), применив тот или иной магнитный материал в качестве сердечника:

Источник: electricalschool.info

Катушка индуктивности. Описание, характеристики, формула расчета

Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Накопленная энергия в индуктивности

Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.

Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

где L — индуктивность, I — ток, протекающий через катушку индуктивности.

Гидравлическая модель

Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.

Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.

Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

Читать еще:  Как правильно работать с мультиметром видео

Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Схемы соединения катушек индуктивностей

Параллельное соединение индуктивностей

Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:

Последовательное соединение индуктивностей

Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:

Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.

Добротность катушки индуктивности

На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.

Добротность катушки индуктивности может быть найдена через следующую формулу:

где R является собственным сопротивлением обмотки.

Катушка индуктивности. Формула индуктивности

Базовая формула индуктивности катушки:

  • L = индуктивность в генри
  • μ 0 = проницаемость свободного пространства = 4π × 10 -7 Гн / м
  • μ г = относительная проницаемость материала сердечника
  • N = число витков
  • A = Площадь поперечного сечения катушки в квадратных метрах (м 2 )
  • l = длина катушки в метрах (м)

Индуктивность прямого проводника:

  • L = индуктивность в нГн
  • l = длина проводника
  • d = диаметр проводника в тех же единицах, что и l

Индуктивность катушки с воздушным сердечником:

  • L = индуктивность в мкГн
  • r = внешний радиус катушки
  • l = длина катушки
  • N = число витков

Индуктивность многослойной катушки с воздушным сердечником:

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • l = длина катушки
  • N = число витков
  • d = глубина катушки

Индуктивность плоской катушки:

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • N = число витков
  • d = глубина катушки

Конструкция катушки индуктивности

Катушка индуктивности представляет собой обмотку из проводящего материала, как правило, медной проволоки, намотанной вокруг либо железосодержащего сердечника, либо вообще без сердечника.

Применение в качестве сердечника материалов с высокой магнитной проницаемостью, более высокой чем воздух, способствует удержанию магнитного поля вблизи катушки, тем самым увеличивая ее индуктивность. Индуктивные катушки бывают разных форм и размеров.

Большинство изготавливаются путем намотки эмалированного медного провода поверх ферритового сердечника.

Некоторые индуктивные катушки имеют регулируемый сердечник, при помощи которого обеспечивается изменение индуктивности.

Миниатюрные катушки могут быть вытравлены непосредственно на печатной плате в виде спирали. Индуктивности с малым значением могут быть расположены в микросхемах с использованием тех же технологических процессов, которые используются при создании транзисторов.

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Источник: fornk.ru

Индуктивность: формула

Если существует замкнутый контур, в котором протекает ток, создающий магнитное поле (магнитный поток), то между током и потоком существует взаимосвязь. Коэффициент пропорциональностями между этими величинами является определением индуктивности.

Также эту пропорциональность можно назвать характеристикой инерционности электрической цепи, которая напрямую связана с понятием ЭДС самоиндукции, которая возникает в цепи, когда изменяется сила тока.

Электрическая цепь и индуктивность

Индуктивность характеризует электромагнитные свойства электроцепей. В более узком понятии, это элемент или участок цепи, обладающий большой величиной самоиндукции.

Таким элементом может считаться один, несколько или даже часть витка проводника, на высоких частотах также прямой отрезок провода любой длины.

Самоиндукция и измерение индуктивности

При изменении тока, который протекает в замкнутом электрическом контуре, меняется создаваемый им магнитный поток. Вследствие этого наводится ЭДС, которая называется ЭДС самоиндукции.

Напряжение ЭДС определяется формулой расчета индукции:

То есть ЭДС прямо пропорциональна величине скорости изменения тока с некоторым коэффициентом L, который и называется «индуктивность».

Обозначение и единицы измерения

В честь Ленца, единица измерения индуктивности получила обозначение символом «L». Выражается в Генри, сокращенно Гн (в англоязычной литературе Н), в честь известного американского физика.

Если при изменении тока в один ампер за каждую секунду ЭДС самоиндукции составляет 1 вольт, то индуктивность цепи будет измеряться в 1 генри.

Как может обозначаться индуктивность в других системах:

  • В системе СГС, СГСМ – в сантиметрах. Для отличия от единицы длины обозначается абгенри;
  • В системе СГСЭ – в статгенри.

Теоретическое обоснование

Ток, протекающий в замкнутом контуре, создает магнитное поле, при этом величина вектора магнитного поля пропорциональна протекающему току. Таким образом, магнитный поток также пропорционален току.

Коэффициент пропорциональности между магнитным потоком и порождающим его током равен индуктивности рассматриваемого контура.

Имеет следующие свойства:

  • Зависит от количества витков контура, его геометрических размеров и магнитных свойств сердечника;
  • Не может быть отрицательной;
  • Исходя из определения, скорость изменения тока в контуре, ограничена значением его индуктивности;
  • При увеличении частоты тока реактивное сопротивление катушки увеличивается;
  • Обладает свойством запасать энергию – при отключении тока запасенная энергия стремится компенсировать падение тока.
Читать еще:  Как переделать трехфазный двигатель на однофазный

Схемы соединения катушек

Как радиотехнический элемент, катушки индуктивностей обладают свойствами соединений, полностью идентичными соединениям резисторов.

Параллельное соединение

Параллельное соединение:

Для двух элементов формула упрощается:

Последовательное соединение

Общее значение последовательного соединения равняется сумме индуктивностей:

Добротность катушки

Одно из важнейших качеств катушек – это добротность. Данный параметр представляет собой отношение реактивного (индуктивного) сопротивления к активному. Активное сопротивление – это сопротивление проводника, из которого выполнен элемент, его можно считать постоянным, за исключением температурного коэффициента сопротивления материала, из которого выполнен провод.

Реактивное сопротивление прямо пропорционально частоте. Формула расчета добротности выглядит следующим образом:

где:

  • π – число пи, ≈3,14,
  • f – частота,
  • R – сопротивление.

Обратите внимание! С ростом частоты сигнала добротность катушки индуктивности возрастает.

Одновитковой контур и катушка

Индуктивность контура, представляющего виток провода, зависит от величины протекающего тока и магнитного потока, пронизывающего контур. Для индуктивности контура формула определяет параметр, соответственно, через поток и силу тока:

Ослабление магнитного потока из-за диамагнитных свойств окружающей среды снижает индуктивность.

Параметр для многовитковой катушки пропорционален квадрату количества витков, поскольку увеличивается не только магнитный поток от каждого витка, но и потокосцепление:

Для того чтобы рассчитать индуктивность катушки формула должна учитывать не только количество витков, но и тип намотки и геометрические размеры.

Соленоид отличается от обычной катушки по двум признакам:

  • Длина обмотки превышает диаметр в несколько раз;
  • Толщина обмотки меньше диаметра катушки также в несколько раз.

Параметры соленоида можно узнать из такого выражения:

где:

  • µ0 – магнитная постоянная;
  • N – количество витков;
  • S – площадь поперечного сечения обмотки;
  • l – длина обмотки.

Важно! Приведенное выражение справедливо для соленоида без сердечника. В противном случае необходимо дополнительно внести множитель µ, который равен магнитной проницаемости сердечника.

Обратите внимание! Используя подвижный сердечник, можно производить оперативное изменение параметров соленоида.

Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение.

Тороидальная катушка (катушка с кольцевым сердечником)

Тороидальный тип обмотки рассчитывается по специальной формуле, которая предполагает, что используется соленоид с бесконечной длиной. Чтобы определять индуктивность формула для тора имеет следующий вид:

где r – усредненный радиус тороидального сердечника.

Кольцевой сердечник прямоугольного сечения можно находить по следующей формуле:

где:

r – внутренний радиус сердечника;

R – внешний радиус;

Важно! Вторая формула позволяет узнавать результат с большей точностью.

Длинный прямой проводник

Как найти индуктивность прямого проводника? Существует формула, дающая точное значение при условии, что проводник имеет длину, значительно превышающую толщину:

где:

  • µe и µi – магнитная проницаемость среды и материала проводника, соответственно;
  • l и r – длина и радиус проводника.

Какой магнитной проницаемостью обладает проводник, можно узнать из справочных материалов.

Применение катушек индуктивности

Рассматриваемые элементы широко применяются в радио,- и электротехники:

  • Частотозадающие цепи;
  • Трансформаторы;
  • Дроссели;
  • Антенны;
  • Элементы фильтров;
  • Накопители энергии;
  • Нагревательные элементы (система индукционного нагрева);
  • Электромагниты;
  • Датчики магнитного поля.

Колебательный контур

Емкость и индуктивный элемент, соединенные в цепь, образуют колебательный контур с резко выраженными частотными свойствами и будут являться резонансной системой. В качестве системы используется конденсатор, изменяя емкость которого, можно производить коррекцию частотных свойств.

Если измерить резонансную частоту, используя известный конденсатор, то можно определить индуктивность катушки.

Индуктивность – важнейший элемент в разных областях электротехники. Для правильного применения нужно знать все параметры используемых элементов.

Устройство, которое позволяет определить параметры катушек индуктивности, в том числе добротность, может называться L-метр или Q-метр.

Источник: amperof.ru

Индуктивность катушки, её назначение, характеристики, формулы

Индуктивность — это физическая величина, характеризующая магнитные свойства электрической цепи. В некоторых источниках её называют коэффициентом самоиндукции, так как она зависит от текущего в замкнутом контуре тока и создаваемого им магнитного потока. Для определения величины этого показателя применяют несколько вариантов расчёта, которые основываются на различных физических параметрах.

Общие сведения

Для того чтобы понять, от чего зависит индуктивность катушки, необходимо подробно изучить всю информацию об этой физической величине. Первым делом следует рассмотреть принятое международное обозначение параметра, его назначение, характеристики и единицы измерения.

Само понятие индуктивности было предложено известным английским физиком Оливером Хевисайдом, который занимался её изучением. Этот учёный подарил миру и другие известные термины — электропроводимость, магнитная проницаемость и сопротивление, а также ЭДС (электродвижущая сила).

Первая буква фамилии другого знаменитого физика — Эмилия Ленца — была взята в качестве обозначения индуктивности в формулах и при проведении расчётов. В наше время символ L продолжает использоваться при упоминании этого параметра.

Выдающийся американский физик Джозеф Генри первым обнаружил явление индуктивности. В его честь физики назвали единицу измерения в международной СИ, которая чаще всего используется в расчётах. В других системах (гауссова и СГС) индуктивность измеряют в сантиметрах. Для упрощения вычислений было принято соотношение, в котором 1 см равняется 1 наногенри. Очень редко используемая система СГСЭ оставляет коэффициент самоиндукции без каких-либо единиц измерения или использует величину статгенри. Она зависит от нескольких параметров и приблизительно равняется 89875520000 генри.

Среди основных свойств индуктивности выделяются:

  1. Величина параметра никогда не может быть меньше нуля.
  2. Показатель зависит только от магнитных свойств сердечника катушки, а также от геометрических размеров контура.

Способы расчёта

Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.

Через силу тока

Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:

  • L — индуктивность контура (в генри);
  • Ф — величина магнитного потока, измеряемого в веберах;
  • I — сила тока в катушке (в амперах).

Такая формула подходит только для одновиткового контура. Если катушка состоит из нескольких витков, то вместо величины магнитного потока используется полный поток (суммарное значение). Когда же через все витки проходит одинаковый магнитный поток, то для определения суммарного значения достаточно умножить величину одного из них на общее количество.

Соленоид конечной длины

Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:

Читать еще:  Как сплести из резинок зверей

  • µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
  • N — количество витков в катушке;
  • S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
  • l — длина соленоида в метрах.

Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:

  • W — энергия магнитного потока, измеряемая в джоулях;
  • I — сила тока в амперах.

Катушка с тороидальным сердечником

В большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:

  • N — число витков катушки;
  • µ — относительная магнитная проницаемость;
  • µ0 — магнитная постоянная;
  • S — площадь сечения сердечника;
  • π — математическая постоянная, равная 3,14;
  • r — средний радиус тора.

Длинный проводник

Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:

  • l — длина проводника в метрах;
  • r — радиус сечения провода, измеряемый в метрах;
  • µ0 — магнитная постоянная;
  • µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
  • µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
  • π — число Пи;
  • ln — обозначение логарифма.

Варианты измерения

Индуктивность катушки в физике определяется путём выполнения вычислений. Однако эту величину можно не только рассчитать, но и измерить. Делается это при помощи прямого или косвенного метода.

Прямой метод

Для измерения индуктивности катушки этим методом необходимо использовать специальные мостовые или прямопоказывающие устройства. С их помощью можно получить максимально точные данные, которые помогут выбрать требуемую катушку для схемы.

Порядок проведения измерений включает в себя следующие этапы:

  1. К прямопоказывающему приспособлению подключают катушку.
  2. После этого постепенно изменяют диапазоны измерений. Это делается до тех пор, пока получаемый результат не будет находиться примерно в середине интервала.
  3. Полученный результат фиксируют и высчитывают с учётом цены деления прибора, а также коэффициента, соответствующего положению переключателя.

Прямой метод измерения можно применить и при определении индуктивности с помощью мостового приспособления. Оно имеет более точную шкалу, поэтому позволяет получить достоверные данные.

Измерение выполняют путём проведения таких действий:

  1. Включённый мостовой прибор подсоединяют к катушке, индуктивность которой необходимо определить.
  2. Аналогично прямопоказывающему устройству проводят переключение интервалов измерений.
  3. После каждого такого действия ручку регулятора балансировки моста поочерёдно перемещают в одно и другое предельное положение.
  4. Как только удалось определить диапазон, в котором мост будет сбалансирован, можно выполнять дальнейшие действия.
  5. На следующем этапе измерений выполняется постепенное перемещение стрелочного индикатора.
  6. После того как в динамике прибора исчезнет звук, необходимо зафиксировать показатели.
  7. Затем их рассчитывают в соответствии с ценой деления шкалы и предусмотренным коэффициентом.

Косвенное определение

Для того чтобы измерить коэффициент самоиндукции, необходимо провести несколько подготовительных мероприятий. В первую очередь нужно собрать измерительную цепь по стандартной схеме, а также подготовить все необходимые приспособления (генератор синусоидального напряжения, частотомер, а также миллиамперметр и вольтметр, рассчитанные на переменный ток).

Порядок определения параметра:

  1. К выходу генератора параллельно подключают вольтметр. Он должен быть переключён в режим, при котором верхнее предельное значение будет соответствовать напряжению в 3−5 вольт.
  2. Аналогично подсоединяют и частотомер.
  3. Отдельно собирают вторую цепь. В ней последовательно соединяют миллиамперметр и катушку, индуктивность которой нужно определить.
  4. Затем обе цепи подключают параллельно друг к другу.
  5. Подключённый генератор устанавливают в режим выработки синусоидального напряжения.
  6. Путём изменения частоты добиваются такой работы приборов, при которой вольтметр будет показывать примерно 2 вольта. При этом сила тока на миллиамперметре будет постепенно уменьшаться.
  7. После этого ручку частотомера перемещают в положение, соответствующее частоте измерений.
  8. Как только эти действия будут выполнены, можно фиксировать значения.

Полученные данные переводятся в СИ, а затем выполняются все необходимые расчёты. Первым делом определяется индуктивное сопротивление. Для этого значения приборов подставляются в следующую зависимость: X=U/I, где U — напряжение, а I — сила тока. Результат расчётов будет выражен в омах.

После этого вычисляется индуктивность по формуле L=X/2 πF. В ней используются такие условные обозначения:

  • X — индуктивное сопротивление;
  • π — математическая постоянная (примерно 3,14);
  • F — частота в герцах, при которой проводились измерения.

Индуктивность — это важный физический параметр, позволяющий определить магнитные свойства электроцепи. При точном его измерении и правильном проведении предусмотренных расчётов можно получить достоверные данные, которые понадобятся при выборе катушки.

Источник: rusenergetics.ru

Формулы расчета
индуктивностей
катушек

Основные положения электромагнетизма, в том числе определение понятия индуктивность — здесь.

Формулы и численные методы расчета катушек индуктивности, которые использует Coil32, вы можете посмотреть в справочном разделе сайта, а именно:

Здесь приведены простые эмпирические формулы расчета индуктивностей, которые Coil32 не использует, но которые могут быть полезны и радиолюбителям и студентам.

Прямой провод
Параллельные провода (ток в одном направлении)
r≪w
Параллельные провода (ток в противоположных направлениях)
r≪w
Полосковая линия
Коаксиальная линия
Однослойная катушка
(l > 0.8 R)
(онлайн калькулятор)
Многослойная катушка
(l ≈ w)
(онлайн калькулятор)
Плоская катушка
(онлайн калькулятор)
Коническая катушка
(онлайн калькулятор)
LH-индуктивность эквивалентной цилиндрической катушки
LP-индуктивность эквивалентной плоской катушки

Во всех расчетных формулах таблицы все размеры в метрах, индуктивность в Генри.

Источник: coil32.ru

Ссылка на основную публикацию
Adblock
detector