Ремонт зарядного для шуруповерта своими руками

Ремонт зарядного для шуруповерта своими руками

Как сделать что-то самому, своими руками — сайт домашнего мастера

Ремонт зарядки шуруповерта своими руками

ОТЛИЧНЫЙ ИНСТРУМЕНТ ДЛЯ МАСТЕРОВ И РУКОДЕЛИЯ И ВСЕ ДЛЯ САДА, ДОМА И ДАЧИ БУКВАЛЬНО ДАРОМ — УБЕДИТЕСЬ САМИ. ЕСТЬ ОТЗЫВЫ.

Как отремонтировать зарядное устройство шуруповерта

В кладовке пылился шуруповерт модели Skil 2301 (китайского производства). Работал он плохо -разряжался в течении 5-10 мин. наконец решил его починить – и вот что получилось.

Зарядка подвела

Проверил аккумуляторы с помощью тестора — они оказались исправны. Причина была в зарядном устройстве. Заявленной мощности в 400 мА на блок питания не хватало: экономия производителя на меди в трансформаторе не давала произойти полной зарядке (см. рис. 1 на стр. 18).

Решил сделать зарядное устройство на специализированной микросхеме (МС), которая бы контролировала заряд. Выбор пал на МАХ 713 — доступно и недорого. В аккумуляторном блоке находятся 10 зарядных емкостей по 1.2 В, 1200 мА. Прочитав номенклатуру на микросхему, пришел к почти типичному схемному решению, подходящему для меня:

ИНСТРУМЕНТ ДЛЯ ДОМА И САДА, РУКОДЕЛИЯ И ПР. ЦЕНЫ ОЧЕНЬ НИЗКИЕ

  1. Входное напряжение — 21,5 В.
  2. 10 аккумуляторов (фото 1).
  3. Зарядный ток — 0,5 А.
  4. Время отключения таймера—180 мин.

Помог токовый регулятор

В МС очень нежный узел, есть собственное питание, поэтому нежелательно, чтобы ток превышал 10 мА. В противном случае МС выходит из строя и повреждается внутренний блок питания микросхемы. Чтобы усилить схему, ввел простой токовый регулятор на LM 317.

VT2 транзистор многие не ставят, но производитель рекомендует его в случае, когда входное напряжение превышает 15 В (рис. 2).

Катушку индуктивности можно и купить, но я намотал сам (фото 2). Ее ток составляет не менее 1,5 А. Размеры катушки L1 — N 48 23x14x10 мм, где da (внешний) = 23 мм, di (внутренний) = 14 мм, h (толщина кольца) = 10 мм.

Намотал 60 витков ПЭЛ d 0,6 мм (рис. 3).

Самое сложное было — разместить всю схему в коробочку родной зарядки устройства (фото 3-6).

После сборки провел испытание — аккумуляторы заряжались 2 часа 40 мин. при силе тока 500 мА, быстрый заряд автоматически отключился. Из этого следует, что микросхему рассчитал правильно, устройство работает исправно.

Подобным образом на базе этой микросхемы можно для любой зарядки создать данное устройство, изменяя схему.

Самостоятельный ремонт зарядного устройства шуруповерта: фото

© Виталий Синковец, г. Архангельск. Фото автора

Источник: kak-svoimi-rukami.com

Как отремонтировать зарядный блок шуруповерта

Одним из самых популярных и востребованных инструментов в домашнем хозяйстве является шуруповерт. С его помощью можно не только завинчивать и вывинчивать крепежные элементы, но еще и сверлить, а также выполнять другие виды работ, заменяя только насадки. Частая эксплуатация инструмента требует регулярной зарядки батареи, а следовательно влечет за собой выход из строя ее или же зарядного устройства. В материале уделим внимание, вопросу о том, как осуществляется ремонт зарядного устройства для шуруповертов.

Почему не заряжается аккумулятор шуруповерта

Если шуруповерт оснащен аккумуляторной батареей, то к нему обязательно должно прилагаться зарядное устройство. Если в один прекрасный момент вы обнаруживаете, что батарея инструмента не зарядилась после того, как вы ставили ее на зарядку, то причин этого может быть несколько:

  • Неисправность аккумулятора, что случается достаточно часто при ненадлежащем обращении с инструментом.
  • Неисправность зарядки. Очень часто случается с китайскими инструментами, которые гораздо дешевле брендовых изделий.

Несмотря на то, что причины отсутствия зарядки аккумулятора две, первым делом нужно проверить исправность батареи. Проверить ее исправность можно путем подключения к клеммам вольтметра или мультиметра. Если прибор будет показывать хотя бы похожее значение (12В, 16В, 24В), то проблема заключается скорее всего в зарядном устройстве.

Важно знать! Большинство зарядных устройств оснащены световыми сигнализациями(диодами), которые отображают процесс зарядки и ее окончание. Если после подключения батареи эти элементы не показывают режим зарядки, или совсем не светятся, значит, проблема в самом зарядном.

Типовые неисправности зарядного устройства шуруповерта

К типовым неисправностям зарядных устройств относятся:

  1. Перегорание предохранителя.
  2. Неисправность выпрямителя, если устройство понижает напряжение с 220В до 12В.
  3. Поломка высоковольтного транзистора инвертора.

Остальные составные части, как показывает практика, работают долго и безотказно, поэтому при подозрениях на неисправность зарядного, следует проверить эти три основных узла. Ремонт зарядки шуруповерта можно выполнить самостоятельно. Для этого ее потребуется разобрать, что возможно при наличии в арсенале обычной четырехгранной отвертки.

Ремонт зарядного устройства шуруповерта

Ремонт зарядного устройства шуруповерта начинается с того, что первоначально нужно выявить возможную причину неисправности. Ведь достаточно часто причиной отсутствия зарядки батареи является окисление контактов или их засорение на зарядке. Для начала осуществите визуальный осмотр изделия, оценив его состояние. Если имеется запах гари, то это говорит о перегорании внутренних элементов.

Ремонт зарядного своими руками осуществляется путем выполнения следующих действий:

  1. Для начала следует снять крышку корпуса, вывинтив 4 или 6 крепежных элементов.
  2. Снимаем крышку и видим, что зарядка состоит из двух частей: трансформатор и плата.
  3. Ремонт начинаем с того, что проверяется напряжение на выходе трансформатора. Для этого тестер устанавливается в режим «Вольтметр». При этом необходимо вилку включить в розетку.
  4. Если мультиметр покажет соответствующее значение, то трансформатор исправен. Если же напряжение отсутствует, тогда нужно прозвонить сетевой кабель. Если повреждение сетевого кабеля исключено, тогда нужно убедиться, что первичная и вторичная обмотка не в обрыве. Обычно в трансформаторах импортного образца в первичной обметке установлен предохранитель. Он обычно спрятан под оболочкой, поэтому его следует найти и прозвонить. При перегорании предохранителя, его следует заменить аналогичным. Если повреждена первичная или вторичная обмотка, то осуществлять ремонт трансформатора не имеет смысла, так как проще приобрести новое устройство. Если причиной неисправности является предохранитель, то после его замены, перед сборкой изделия, следует выполнить проверку.
  5. Если же напряжение поступает на плату, тогда следует приступить к поиску неисправного элемента. Необходимо осуществить проверку высоковольтного выпрямителя. Очень часто в таком случае неисправным оказывается один из конденсаторов. Обычно это электролитический конденсатор на плате, который является самым большим. Его необходимо заменить на аналогичный с соответствующими параметрами.
  6. Если же конденсаторы исправны, тогда причиной неисправности является поломка транзистора. Его также следует перепаять.

После отремонтированное зарядное следует проверить на исправность и функционирование. Время стандартной зарядки батареи составляет от 1 до 4 часов, при полностью разряженном аккумуляторе.

Важно знать! Не допускайте хранения шуруповерта продолжительное время при полностью разряженной батарее. Нельзя также хранить продолжительное время шуруповерт, не прибегая к его использованию.

Подводя итог, следует отметить, что для ремонта зарядного устройства шуруповерта, не нужно быть специалистом. Конструкция данного изделия достаточно простая, но не забывайте, что данный элемент работает от электричества, которое опасно для жизни. При проведении ремонтных работ не забывайте соблюдать технику безопасности.

Читать еще:  Какой производитель шуруповертов лучше

Источник: instrumentyvdom.ru

Ремонт зарядного для шуруповерта своими руками

«Народный» зарядник для шуруповёрта

Автор: arhimed2007, arhimed@ukr.net
Опубликовано 27.10.2015
Создано при помощи КотоРед.

Мрр-мяу! Воистину, лень — тормоз прогресса. Уже лет несколько валялся у меня в загашнике шуруповёрт. Польский (если верить паспорту), марки «VERTO», на 12 В. Когда-то выменял его на одну из древних мобил. НОВЫЙ! В УПАКОВКЕ. Но, блин, аккумулятор. С полного заряда его через месяц работы уже не хватало на десяток шурупов. Чуть позже я унюхал кем-то выброшенную начинку от аккумулятора BOSH и ею перепаковал свой аккумулятор. Но. те же грабли! Новые покупать задавила жаба. В общем, забросил я его куда подальше.

Так поляцкий продухт и валялся несколько лет. А недавно мне приволокли в ремонт другой шурик, на 14,4 В, марки «MATRIX». Один из шедших в комплекте аккумуляторов сдох, причём бОльшую часть банок тупо закоротило. В результате зарядное издало пшик и прогорело так, что аж корпус деформировался, и блок питания скис. Как всегда, термопредохранитель. Второй аккумулятор оказался вполне живым.

Естественно, просто восстановить «родной» зарядник — не вариант, если возможны такие дефекты. Нужна как минимум защита от перегрузки. Серьёзный зарядник с анализатором городить было влом, кроме того, в умных книжках говорилось, что самым простым в исполнении для NiCd является «капельный» режим заряда — током 0,1С, где С — численный эквивалент ёмкости батареи в ампер-часах. При этом не случается перезаряда и ток заряда по окончании процесса просто компенсирует саморазряд, который у банок от дядюшки Ляо достаточно высок. Таким образом, зарядник просто должен представлять собой стабилизатор тока. Он же не даст спалить блок питания в случае повторения истории с дохлой батареей.

«Родные» же зарядники, как оказалось, не блещут не только сложностью, но и качеством работы. Токозадающий резистор в них очень часто прогорает до дыр в плате, ток задаётся наобум Лазаря, ни тебе защиты, ни стабилизации! Посему от оригинальных китайских плат было решено избавиться и вставить вместо них более пристойный зарядник.

Изваять оный девайс было решено, как всегда, из подручных средств, а именно старого компьютерного железа. В качестве регулирующего элемента был выбран мощный MOSFET с материнской платы. Типовая схема стабилизатора тока на полевом транзисторе была дополнена индикацией питания и процесса заряда. Получилось вот что:
Собственно стабилизатор тока выполнен на элементах VT2, VT3 и токоизмерительном резисторе R5. Стабилитрон VD2 защищает MOSFET от превышения напряжения сток — затвор. На VT1 выполнен индикатор окончания заряда, гасящий красный светодиод HL2, когда напряжение на истоке VT3 упадёт ниже порога открывания минус падение напряжения на R4. А это, в свою очередь, происходит при увеличении напряжения на батарее свыше 15 В. Второй светодиод горит всё время, индицируя наличие питания на заряднике. Диод VD1 предохраняет батарею от разряда через схему при отключении БП.

В качестве VT1, VT2 были взяты самые распространённые в компьютерном барахле MMBT3904 (корпус SOT-23 с маркировкой 1Ам, t04, р04 или ещё несколько вариантов). VT3 — APM2025, шотя походу сойдёт любой n-MOSFET, применяемый в стабилизаторах питания материнских плат. Резисторы типоразмера 1206 взяты со старых серверных плат, хотя можно применить и меньшие. Просто под 1206 легче изготовить плату. Оттуда же был сдут и конденсатор того же типоразмера. Единственный выводной резистор — R5, который я установил мощностью 3 Вт. Хотя при желании его можно изваять из нескольких включенных параллельно 1210 от винчестеров, они такой ток выдержат.

Плата, как всегда, была разведена в Sprint Layout 6 и выполнена методом ЛУТ. Совмещение сторон выполнялось булавками через отверстия по краям платы. Переходы между слоями выполнены обрезками выводов, запаянными с двух сторон. Красный провод на фото — ошибка, которая в выложенном варианте платы уже исправлена. 🙂 Разводка выполнялась точно под корпус. Разъём блока питания прикошачен непосредственно к плате. Подгонять эту конструкцию под направляющие в корпусе пришлось дремелем с фрезой, хотя можно и резаком, правда, не так аккуратно.

Заработал зарядник сразу и на ура, что говорит об отсутствии ошибок в монтаже. Рабочую батарею зарядил примерно за три часа, дохлая же не вызвала серьёзного перегрева элементов в течение 20 минут, после чего АКБ была перепакована.

Следующим номером я решил сделать аналогичный девайс и под свой 12В шуруповёрт. Ведь ёмкость их аккумуляторов одинакова, значит, и ток заряда такой же. Вдруг когда дойдут руки купить солидные банки для перепаковки его батареи! Вот вариант его платы:

Как оказалось, перепакованные бошевские банки этой штуковиной заряжаются отнюдь не так уж плохо! Заряда батарей хватало примерно на час непрерывной работы, что для такой дешёвки очень даже пристойно. Вся технология изготовления была такой же, как и в клиентском шуруповёрте. Только стабилитрон я поставил советский двунаправленный — его давно надо было куда-нибудь деть 🙂

Разъём был посажен в корпус посредством того же подпиливания дремелем, после чего плата легла как родная.

В итоге имеем несложную и халявную замену примитивным зарядникам, поставляемым в комплекте с дешёвыми шуруповёртами, что позволяет использовать их батареи на всю доступную ёмкость. Разумеется, при нынешних достижениях микроминиатюризации можно напичкать тот же корпус ещё массой дополнительных прибамбасов — таймером, переключателем режимов заряда, звуковой сигнализацией и т.д. Но это всё уже снижает доступность схемы для повторения слесарем дядей Васей 🙂

Источник: www.radiokot.ru

Конструкция зарядного устройства от шуруповёрта

Схема, устройство, ремонт

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол».

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

Читать еще:  Как снять редуктор шуруповерта

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки «Пуск» электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

В моей практике был случай, когда стабилитрон пробило, мультиметром он «звонился» как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на «пробой» можно также, как и обычный диод. О проверке диодов я уже рассказывал.

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор «Сеть» (зелёный). Вынимаем АКБ и делаем «контрольный» замер напряжения на её клеммах. АКБ должна быть заряженной.

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.

Источник: go-radio.ru

Стандартная схема зарядного устройства для шуруповёртов на 18 вольт

Практически все шуруповёрты работают от аккумуляторов. Средняя ёмкость аккумулятора — 12 мАч. А для того, чтобы он всегда находился в рабочем состоянии, нужна постоянная подзарядка. Для этого необходимо зарядное устройство, характерное для каждого типа аккумуляторов. Однако они сильно различаются по своим характеристикам.

В настоящее время выпускают модели на 12–18 В. Также стоит отметить, что производители используют разные компоненты для зарядных устройств различных моделей. Чтобы разобраться с этим, вы должны ознакомиться со стандартной схемой этих зарядных устройств.

Стандартная электросхема зарядного устройства

Основой стандартной схемы является микросхема трехканального типа. В этом варианте на микросхеме крепятся четыре транзистора, сильно отличающихся по ёмкости и высокочастотные конденсаторы (импульсные или переходные). Для стабилизации тока используются тиристоры или тетроды открытого типа. Проводимость тока регулируется дипольными фильтрами. Эта электрическая схема легко справляется с сетевыми перегрузками.

Принципиальная схема

Предназначение электроинструментов в первую очередь в том, чтобы сделать наш повседневный труд менее утомительным и рутинным. В домашнем быту незаменимым помощником в ремонте или разборке (сборке) мебели и прочих предметов домашнего обихода является шуруповёрт. Автономное питание шуруповёрта делает его более мобильным и удобным в использовании. Зарядное устройство является источником питания для любого аккумуляторного электроинструмента, в том числе и шуруповёрта. Для примера познакомимся с устройством и принципиальной схемой.

Читать еще:  Какой шуруповерт лучше макита или бош

Для принципиальных схем зарядных устройств шуруповёртов на 18 В используются транзисторы переходного типа несколько конденсаторов и тетрод с диодным мостом. Частотную стабилизацию осуществляет сеточный триггер. Проводимость тока зарядки на 18 В обычно составляет 5,4 мкА. Иногда, для улучшения проводимости, применяют хроматические резисторы. Ёмкость конденсаторов, в этом случае, не должна быть выше 15 пФ.

Конструкция аккумуляторного устройства для шуруповёрта

«Банки» аккумулятора заключены в корпус, который имеет четыре контакта, включая два силовых плюс и минус для разряда/заряда. Верхний управляющий контакт включён через термистор (термодатчик), который защищает аккумулятор от перегрева во время зарядки. При сильном нагреве он ограничивает или отключает ток заряда. Сервисный контакт включается через резистор на 9 кОм, который выравнивает заряд всех элементов сложных зарядных станций, но они используются обычно для промышленных приборов.

Стандартные и индивидуальные характеристики зарядного устройства фирмы «Интерскол»

  1. Зарядные устройства марки «Интерскол» используют трансиверы с повышенной проводимостью. Их максимальная токовая нагрузка доходит до 6 А, а в новых моделях и выше. В стандартном зарядном устройстве шуруповёрта «Интерскол» используется двухканальная микросхема, конденсаторы на 3 пФ, импульсные транзисторы и тетроды открытого типа. Проводимость тока достигает 6 мкА, при средней энергоёмкости аккумулятора 12 мАч.
  2. Довольно часто российский производитель «Интерскол» использует схему зарядки аккумулятора с транзисторами типа IRLML 2230. В этом случае в зарядных устройствах на 18 В применяют микросхему трёхканального типа и конденсаторы с ёмкостью 2 пФ, которые хорошо переносят сетевые нагрузки. Показатель проводимости при этом достигает 4 мкА. При выборе шуруповёрта нужно учитывать его мощность, которая влияет на его срок эксплуатации. Чем выше показатель мощности, тем дольше проработает инструмент.

Элементы блока питания

Аккумулятор является самой дорогостоящей частью шуруповёрта и составляет примерно 70% от всей стоимости инструмента. При выходе его из строя придётся тратиться на приобретение практически нового шуруповёрта. Но если есть определённые навыки и знания вы можете самостоятельно исправить поломку. Для этого нужны определённые знания об особенностях и строении аккумулятора или зарядного устройства.

Все элементы шуруповёрта, как правило, имеют стандартные характеристики и размеры. Их основным отличием является величина энергоёмкости, которая измеряется в А/ч (ампер/час). Ёмкость указывают на каждом элементе блока питания (их называют «банками»).

«Банки» бывают: литий — ионные, никель — кадмиевые и никель — металл — гидридные. Напряжение первого вида — 3,6 В, другие имеют напряжение — 1,2 В.

Неисправность аккумулятора определяется мультиметром. Он определит, какая из «банок» вышла из строя.

Ремонт аккумулятора своими руками

Для ремонта аккумулятора шуруповёрта нужно знать его конструкцию и точно определить место поломки и саму неисправность. Если хотя бы один элемент выйдет из строя, вся цепь потеряет свою работоспособность. Наличие «донора», у которого все элементы в порядке или новые «банки» помогут решить эту проблему.

Мультиметр или лампа на 12 В подскажет, какой именно элемент неисправен. Для этого нужно поставить аккумулятор заряжаться до полной его зарядки. После чего разберите корпус и измерьте напряжение всех элементов цепи. Если напряжение «банок» ниже номинального, то нужно пометить их маркером. Затем соберите аккумулятор и дайте ему поработать до тех пор, пока его мощность заметно упадёт. После этого разберите снова и замерьте напряжение помеченных «банок». Проседание напряжения на них должно быть наиболее заметным. Если разница составляет 0,5 В и выше, а элемент работает, то это говорит о его скором выходе из строя. Такие элементы необходимо заменить.

С помощью лампы на 12 В можно также определить неисправные элементы цепи. Для этого нужно полностью заряженный и разобранный аккумулятор подключить к контактам плюс и минус на лампу 12 В. Нагрузка, созданная лампой, будет разряжать аккумуляторную батарею. После чего замерьте участки цепи и определите неисправные звенья. Ремонт (восстановление или замену) можно произвести двумя способами.

  1. Неисправный элемент обрезается и паяльником припаивается новый. Это касается литий — ионных батарей. Так как восстановить их работу не представляется возможным.
  2. Никель — кадмиевые и никель — металл — гидридные элементы можно восстановить, если присутствует электролит, который потерял объём. Для этого их прошивают напряжением, а также усиленным током, что способствует устранению эффекта памяти и повышает ёмкость элемента. Хотя полностью устранить дефект не получится. Возможно, спустя, некоторое время неисправность вернётся. Гораздо лучшим вариантом будет замена вышедших из строя элементов.

Замена необходимых элементов цепи

Для ремонта аккумулятора для шуруповёрта потребуется запасная аккумуляторная батарея, из которой, можно позаимствовать нужные детали или покупка новых элементов цепи. Новые «банки» должны соответствовать необходимым параметрам. Для их замены потребуется паяльник, олово, канифоль или флюс.

  1. Распаяйте соединения неисправных деталей и установите на их место новые. Не допускайте при этом их перегрева, который может привести к порче аккумулятора. Для этого постарайтесь выполнить быструю пайку без промедлений. В процессе пайки можете охлаждать её прикосновением руки, при отключённом напряжении.
  2. Выполняйте соединения родными пластинами (можно медными), иначе перегрев проводов может привести в работу необходимый термистор, который контролирует нагрев и отключает систему зарядки. При подключении не забывайте соблюдать полярность. Минус предыдущего элемента при последовательном соединении присоединяется к плюсу следующего.
  3. Выровняйте потенциал элементов цепи. Он различается практически на всех «банках». Для этого поставьте аккумулятор заряжаться на всю ночь, а потом на сутки оставьте для остывания. После чего, измерьте напряжение элементов. Показатели должны быть очень близки к номиналу.
  4. Вставьте аккумуляторную батарею в шуруповёрт и дайте на него максимальную нагрузку до полной разрядки. Сделайте два полных разрядных цикла. Результат даст полное представление об эффективности ремонтных работ.

Универсальный зарядник своими руками

Чтобы зарядить аккумуляторное устройство, можно сделать самодельную зарядку, питающуюся от USB-источника. Необходимые компоненты для этого: розетка, USB-зарядка, 10 амперный предохранитель, необходимые разъёмы, краска, изолента и скотч. Для этого нужно:

  1. Разобрать шуруповёрт на детали и отрезать верхний корпус от ручки ножом.
  2. Сделать отверстие для предохранителя сбоку от ручки. Соединить провод с предохранителем и вмонтировать в ручку агрегата.
  3. Зафиксировать предохранитель клеем или термопистолетом. Корпус обмотать скотчем и присоединить конструкцию к разъёму батареи. Провода монтируются вверху шуруповёрта. Инструмент собирается и обматывается изолентой. После чего корпус отшлифовывается, покрывается краской и полученное устройство заряжается.

Как видите, этот процесс не займёт много времени и не будет слишком разорителен для вашего семейного бюджета.

Источник: instrument.guru

Ссылка на основную публикацию
Adblock
detector