Пила шим контроллера регулирует скважность

Пила шим контроллера регулирует скважность

Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

Область применения

С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана здесь.

Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.

Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

  • обеспечивает режим плавного пуска преобразователя;
  • ограничивает амплитуду и скважность управляющих импульсов;
  • контролирует уровень входного напряжения;
  • защищает от короткого замыкания и превышения температуры силового ключа;
  • при необходимости переводит устройство в дежурный режим.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Пример использования ШИМ регулятора

Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в этой статье. Он построен на базе микросхемы NE555 и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

Источник: ledjournal.info

50 оттенков ПНЯ*. Микроконтроллеры в импульсных источниках питания

ПНЯ* — Периферия Независимая от Ядра в микроконтроллерах Microchip, известная так же как CIP — Core Independent Peripheral.

Микроконтроллеры в импульсных источниках питания
Часть 1

Забегая вперед хотелось бы отметить, что цель данной статьи не состоит в обсуждении преимуществ или недостатков способов управления, а так же в рекомендациях по выбору оптимальных топологий построения Импульсных Источников Питания (ИИП) и расчету элементов схемы – для этого есть тонны специализированной литературы.

Читать еще:  Распиловочный стол для ручной циркулярной пилы

Цель статьи – показать принципиальную возможность реализации большинства топологий ИИП на универсальной периферии микроконтроллеров Microchip, продемонстрировать преимущества микроконтроллерных решений по гибкости и универсальности относительно специализированных «аналоговых» ШИМ-контроллеров и ASIC для ИИП.

Ниже будем рассматривать решения на основе микроконтроллеров, но «цифровыми» источниками такие решения назвать нельзя, так как петля обратной связи все-же замкнута через аналоговые блоки и параметры ШИМ сигнала формируются аппаратной петлей обратной связи, а не рассчитываются ядром процессора. Для полностью цифровых решений Microchip выпускает специализированные 16-и разрядные цифровые сигнальные контроллеры (семейства dsPIC33 GS- серий) [1].

Из чего же сделан ИИП?

Сердцем импульсного источника питания служит ШИМ-контроллер. Структурная схема одного из вариантов специализированного ШИМ-контроллера приведена на рис.1.

Рис.1. Структура специализированной микросхемы драйвера преобразователя питания.

Основным элементом схемы является SR-триггер, который управляет выходным каскадом включения силового ключа.

Триггер запускается по тактовым синхросигналам (вход S, Set). Сбросом (вход R, Reset) управляют сигналы компаратора C1, опорный сигнал для которого формируется операционным усилителем сигнала ошибки А1. Выход триггера управляет выходными ключами, управление которыми может быть заблокировано сигналами перенапряжения (компаратор C2), бланкирования и др.

При необходимости управления такой или подобной схемой извне (изменение и измерение параметров, мягкий старт, и пр.), нужно использовать внешние управляющие решения, например микроконтроллер или управляющую логику.

Итого, для построения управляемого интеллектуального источника питания нам нужно иметь микросхему ШИМ-контроллера и микроконтроллер, или же можно совместить – на базе микроконтроллера сделать ШИМ-контроллер преобразователя энергии.

Топологии ИИП

Топология это подключение индуктивности, конденсатора, переключающих элементов схемы для обеспечения преобразования энергии, соотношения входных и выходных параметров.

схема описание
повышающий
понижающий
Sepic

Рис. 2 Основные топологии ИИП.

Принцип управления силовым ключом в наиболее часто используемых топологиях ИИП в общем-то одинаковый (см. рис 2). Регулируется скважность открытия силового ключа, т.е. соотношение между состояниями «открыт» и «закрыт». Управление скважностью осуществляется либо в зависимости от выходного напряжения (управление по напряжению, voltage-mode control), либо в зависимости от тока в силовой индуктивности (управление по току, current-mode control).

В каждом из двух режимов управление может быть гистерезисное (Hysteretic Control) или пропорциональное (Proportional Control). При гистерезисном управлении скважность импульсов фиксирована, а регулировка выходного напряжения осуществляется включением или отключением подачи импульсов управления силового ключа.

При пропорциональном управлении скважность изменяется пропорционально величине рассогласования между фактическим выходным напряжением и требуемым.

Для распространенных топологий ИИП промышленностью выпускаются специализированные ШИМ-контроллеры. Но что делать, если под нужную топологию не существует готового ШИМ-контроллера? В этом случае на помощь так же может прийти микроконтроллер с конфигурируемой периферией.

Микроконтроллеры с ПНЯ

Рассмотрим состав периферии 8-и битных микроконтроллеров Microchip, предназначенных для построения преобразователей энергии.

Рис. 3. Периферия контроллеров серии PIC16F1769
Контроллеры серии PIC16F176x (см. рис.3) имеют набор периферийных модулей достаточных для реализации многоканальных ШИМ контроллеров импульсного источника питания:

  • быстрые компараторы;
  • операционные усилители;
  • формирователь комплементарных сигналов (COG);
  • программируемый формирователь пилообразного напряжения (PRG);
  • источник опорного напряжения;
  • ЦАП;
  • АЦП;
  • детектор перехода через ноль (ZCD);
  • таймеры с функцией сброса и ограничения, ШИМ;
  • модулятор сигналов;
  • Конфигурируемые Логические Ячейки (CLC);
  • датчик температуры.

Периферийные модули могут соединяться внутри микроконтроллера для выполнения определенных функций. Например, рис.4 иллюстрирует конфигурирование периферии для выполнения функции преобразователя энергии. Причем подобное конфигурированные взаимосвязи периферийных модулей не требуют вмешательства ядра в процессе работы устройства.

Рис. 4. Повышающий преобразователь питания светодиодов со стабилизацией тока и диммирования.

Таким образом, на одной микросхеме/микроконтроллере мы можем реализовать ядро импульсного источника питания и управляющую логику (программу), тем самым мы получаем возможность исключить из схемы специализированный драйвер преобразователя питания.
Рассмотрим подробнее различные режимы работы ШИМ-контроллеров и возможность реализации их на периферии микроконтроллеров Microchip.

Управление по напряжению (Voltage Mode)

В этом режиме скважность ШИМ сигнала, управляющего силовыми ключами, определяется непосредственно выходным напряжением.

При гистерезисном управлении, если напряжение на выходе ниже нормы – идет «накачка» источника. Если напряжение на выходе больше порога – компаратор блокирует управление силовым ключом, идет разряд выходной накопительной емкости. В англоязычной литературе такой режим называют «hiccup-mode» – «режим с икотой».

Данный режим используется сравнительно редко, так как сопровождается большими пульсациями выходного напряжения и требует накопительного конденсатора сравнительно высокой емкости.
Рисунок 5 демонстрирует принцип работы режима управления по напряжению с гистерезисным управлением. Здесь и далее не показана выходная часть источника, так как определяется топологией, выходной мощностью и др. Для иллюстрации принципа работы ШИМ-контроллера иногда будет показан пример с выходной частью.

Рис. 5а. Первая схема – с фиксированным выходным напряжением, вторая – с регулировкой выходного напряжения.

Рис. 5б. Диаграммы выхода ШИМ и выхода компаратора.

Рис. 6. Пример выходного каскада повышающего импульсного источника питания, подключенного к ШИМ контроллеру (см.рис.5).

Конфигурируемые логические ячейки (CLC) на рис .5 можно включить как элемент И. Для предотвращения высокочастотной генерации от компаратора его выход целесообразно пропустить через еще одну CLC – D-триггер с синхронизацией от сигнала ШИМ. В этом случае получим два «бонуса» — отсутствие возникновения высокочастотной генерации и неизменность скважности управляющего ШИМ (см. пояснения на рис. 7). Подробнее о конфигурируемых логических ячейках см. в статье «Конфигурируемые логические ячейки в PIC микроконтроллерах» [2].

Рис.7.а. Укорочение управляющих ШИМ импульсов, возможность появления высокочастотной генерации

Рис. 7.б. Синхронизация сигналов позволяет предотвратить укорочение ШИМ импульсов

Рис. 8. Синхронизация сигналов для предотвращения генерации и укорочения ШИМ.

Управление по напряжению с пропорциональным управлением

При управлении по напряжению с пропорциональным управлением рассогласование выходного напряжения должно вносить поправку в скважность управляющих импульсов. Пропорцию между величиной рассогласования и величиной коррекции скважности обеспечивает усилитель ошибки и фильтр петли регулирования. Управление по напряжению с пропорциональным управлением используется сравнительно редко, так как при этом методе управления индуктивность может входить в насыщение при запуске источника и при коротком замыкании на выходе, требуется петлевой фильтр второго порядка и есть влияние входного напряжения на коэффициент усиления усилителя ошибки.

Управление по напряжению с пропорциональным управлением можно реализовать на встроенной периферии PIC контроллеров с помощью ШИМ модулятора – необходим генератор пилы (Ramp генератор) и компаратор (реализацию ШИМ модуляторов мы уже рассматривали в [2]). Генерируемый микроконтроллером опорный ШИМ служит для формирования пилообразного напряжения и определяет частоту управляющих импульсов, а напряжение обратной связи определяет скважность управляющих импульсов.

Для предотвращения насыщения индуктивности при запуске источника или при коротком замыкании на выходе нужно ограничить скважность управляющего сигнала. Для этого выходной сигнал компаратора (CMP1_out) подаем на CLC (элемент И), а на другой вход – опорный ШИМ формирования пилы (сигнал PWM рис. 10). Длительность импульса ШИМ будет служить ограничителем скважности управляющего сигнала DRV (ограничивать сигнал с выхода компаратора).

Рис.9 ШИМ-контроллер ИИП в режиме управления по напряжению с пропорциональным управлением.

Рис.10. Диаграммы работы ШИМ контроллера с управлением по напряжению

Управление по току (Current Mode)

Данный метод устраняет недостаток режима управления по напряжению. В этом методе Контроллер получает вторую петлю обратной связи. Внутренний быстрый контур служит для контроля тока силового ключа (индуктивности) на каждом цикле его включения. При подаче сигнала на открытие силового ключа, ток через индуктивность, а значит и через силовой ключ, начинает линейно расти. При достижении порога силовой ключ размыкается, начинается отдача энергии индуктивности через диод. По времени или по детектированию нулевого тока в индуктивности (в режиме непрерывного тока или критической проводимости, CCrM) цикл повторяется.

Так как силовой ключ размыкается при достижении пикового тока, то обеспечивается постоянство накопленной энергии в индуктивности вне зависимости от входного напряжения (изменение входного напряжения влияет на скорость заряда). Второй контур петли регулирования контролирует выходное напряжение.

Управление по току с гистерезисным управлением: аналогично методу управления по напряжению – осуществляется Вкл/Выкл ШИМ управления силового ключа в зависимости от напряжения на выходе.

Рис.11а. ШИМ контроллер с управлением по току с гистерезисным управлением. Isence – контроль пика тока Is через индуктивность, Vout – проверка выходного напряжения, блокирование управляющего ШИМ при превышении выходного напряжения. Вариант с фиксированным выходным напряжением и с регулировкой выходного напряжения.

Рис. 11б. ШИМ контроллер и вариант выходной топологии для повышающего преобразователя с контролем пикового тока.

Управление по току с пропорциональным управлением

При этом способе управления переменная скважность ШИМ зависит от выходного напряжения и активного фильтра обратной связи.

Рис. 12. ШИМ контроллер с управлением по току с пропорциональным управлением. Вариант с фиксированным и с регулируемым выходным напряжением.

В данном методе наблюдается нестабильность петли обратной при скважности выше 50% (появление генерации на частоте ½ Fswx, зависит от шума на Vin или Vout). Данный процесс хорошо изучен и проблема решается уменьшением усиления в петле обратной связи, что можно обеспечить двумя способами (рис.13):

  • добавлением пилообразного напряжения к Isense;
  • вычитанием пилообразного напряжения из выхода петлевого фильтра.

Рис.13. Добавление модуля формирования пилообразного напряжения (PRG) в ШИМ контроллер для устранения нестабильности петли обратной связи. Вариант с фиксированным и с регулируемым выходным напряжением.

Контроллеры Microchip для преобразователей энергии, как составную часть CIP имеют программируемый генератор пилообразного напряжения (Programmable Ramp Generator, PRG или Slope Compensation).

Модуль PRG позволяет формировать пилообразное напряжение с независимой регулировкой фронта и спада, в качестве запускающих сигналов могут использоваться различные внутренние и внешние сигналы.

Продолжение следует.

Далее:
Синхронный преобразователь
Генератор комплементарных сигналов
Многофазное чередующееся (интерливд) ШИМ управление
Автоматизация функций
Программа контроллера
Отладка

Источник: habr.com

alex-day › Блог › Широтно Импульсная Модуляция (ШИМ, PWM)

Все микропроцессоры работают с цифровыми сигналами, т.е. с логическим нулем (0 В), или логической единицей (5 В или 3.3 В). Поэтому микропроцессор не может сформировать на выходе промежуточное напряжение. Использование для этих целей внешних ЦАП (www.drive2.ru/b/2558751/) — сложно и задействует сразу много ножек микропроцессора, что неудобно. В этих случаях применяют Широтно-импульсную модуляцию (ШИМ, англ. pulse-width modulation (PWM)) — процесс управления мощностью, подводимой к нагрузке, путём изменения скважности импульсов, при постоянной частоте. Широтно-импульсная модуляция представляет собой периодический импульсный сигнал.
Существуют цифровые и аналоговые ШИМ. Принцип их работы остается одинаковым вне зависимости от исполнения и заключается в сравнении двух видов сигналов:
Uоп – опорное (пилообразное, треугольное) напряжение;
Uупр – входное постоянное напряжение.
Cигналы поступают на компаратор, где они сравниваются, а при их пересечении возникает / исчезает (или становится отрицательным) сигнал на выходе ШИМ.
Выходное напряжение Uвых ШИМ имеет вид импульсов, изменяя их длительность, мы регулируем среднее значение напряжения (Ud) на выходе ШИМ:

Период тактирования T определяет через какие промежутки времени подаются импульсы.

Длительность импульса — величина показівающая время в течении которого подается сигнал t, с;

Скважность — Соотношение длины импульса (τ) к периоду тактирования (T); пропорционально модулирующей величине. Коэффициент заполнения обычно отображают в процентах (%).

Коэффициент заполнения D – величина обратная скважности.
Несмотря на то, что скважность и коэффициент заполнения могут использоваться в одинаковом контексте, физический смысл их отличается.
Эти величины безразмерны.

PS ШИМ может быть реализован не только при помощи микроконтроллеров, но и на аналоговой базе. Например, простейший ШИМ на основе мультивибратора из двух транзисторов:

Источник: www.drive2.ru

Широтно-импульсная модуляция

ШИМ или PWM (широтно-импульсная модуляция, по-английски pulse-width modulation) – это способ управления подачей мощности к нагрузке. Управление заключается в изменении длительности импульса при постоянной частоте следования импульсов. Широтно-импульсная модуляция бывает аналоговой, цифровой, двоичной и троичной.

Применение широтно-импульсной модуляции позволяет повысить КПД электрических преобразователей, особенно это касается импульсных преобразователей, составляющих сегодня основу вторичных источников питания различных электронных аппаратов. Обратноходовые и прямоходовые однотактные, двухтактные и полумостовые, а также мостовые импульсные преобразователи управляются сегодня с участием ШИМ, касается это и резонансных преобразователей.

Широтно-импульсная модуляция позволяет регулировать яркость подсветки жидкокристаллических дисплеев сотовых телефонов, смартфонов, ноутбуков. ШИМ реализована в сварочных аппаратах, в автомобильных инверторах, в зарядных устройствах и т. д. Любое зарядное устройство сегодня использует при своей работе ШИМ.

В качестве коммутационных элементов, в современных высокочастотных преобразователях, применяются биполярные и полевые транзисторы, работающие в ключевом режиме. Это значит, что часть периода транзистор полностью открыт, а часть периода — полностью закрыт.

И так как в переходных состояниях, длящихся лишь десятки наносекунд, выделяемая на ключе мощность мала, по сравнению с коммутируемой мощностью, то средняя мощность, выделяемая в виде тепла на ключе, в итоге оказывается незначительной. При этом в замкнутом состоянии сопротивление транзистора как ключа очень невелико, и падение на нем напряжения приближается к нулю.

В разомкнутом же состоянии проводимость транзистора близка к нулю, и ток через него практически не течет. Это позволяет создавать компактные преобразователи с высокой эффективностью, то есть с небольшими тепловыми потерями. А резонансные преобразователи с переключением в нуле тока ZCS (zero-current-switching) позволяют свести эти потери к минимуму.

В ШИМ-генераторах аналогового типа, управляющий сигнал формируется аналоговым компаратором, когда на инвертирующий вход компаратора, например, подается треугольный или пилообразный сигнал, а на неинвертирующий — модулирующий непрерывный сигнал.

Выходные импульсы получаются прямоугольными, частота их следования равна частоте пилы (или сигнала треугольной формы), а длительность положительной части импульса связана с временем, в течение которого уровень модулирующего постоянного сигнала, подаваемого на неинвертирующий вход компаратора, оказывается выше уровня сигнала пилы, который подается на инвертирующий вход. Когда напряжение пилы выше модулирующего сигнала — на выходе будет отрицательная часть импульса.

Если же пила подается на неинвертирующий вход компаратора, а модулирующий сигнал — на инвертирующий, то выходные импульсы прямоугольной формы будут иметь положительное значение тогда, когда напряжение пилы выше значения модулирующего сигнала, поданного на инвертирующий вход, а отрицательное — когда напряжение пилы ниже сигнала модулирующего. Пример аналогового формирования ШИМ — микросхема TL494, широко применяющаяся сегодня при построении импульсных блоков питания.

Цифровая ШИМ используются в двоичной цифровой технике. Выходные импульсы также принимают только одно из двух значений (включено или выключено), и средний уровень на выходе приближается к желаемому. Здесь пилообразный сигнал получается благодаря использованию N-битного счетчика.

Цифровые устройства с ШИМ работают также на постоянной частоте, обязательно превосходящей время реакции управляемого устройства, этот подход называется передискретизацией. Между фронтами тактовых импульсов, выход цифрового ШИМ остается стабильным, или на высоком, или на низком уровне, в зависимости от текущего состояния выхода цифрового компаратора, который сравнивает уровни сигналов на счетчике и приближаемый цифровой.

Выход тактуется как последовательность импульсов с состояниями 1 и 0, каждый такт состояние может сменяться или не сменяться на противоположное. Частота импульсов пропорциональна уровню приближаемого сигнала, а единицы, следующие друг за другом могут сформировать один более широкий, более продолжительный импульс.

Получаемые импульсы переменной ширины будут кратны периоду тактования, а частота будет равна 1/2NT, где T – период тактования, N – количество тактов. Здесь достижима более низкая частота по отношению к частоте тактования. Описанная схема цифровой генерации — это однобитная или двухуровневая ШИМ, импульсно-кодированная модуляция ИКМ.

Эта двухуровневая импульсно-кодированная модуляция представляет собой по сути серию импульсов с частотой 1/T, и шириной Т или 0. Для усреднения за больший промежуток времени применяется передискретизация. Высокого качества ШИМ позволяет достичь однобитная импульсно-плотностная модуляция (pulse-density-modulation), называемая также импульсно-частотной модуляцией.

При цифровой широтно-импульсной модуляции прямоугольные подимпульсы, которыми оказывается заполнен период, могут приходиться на любое место в периоде, и тогда на среднем за период значении сигнала сказывается только их количество. Так, если разделить период на 8 частей, то комбинации импульсов 11001100, 11110000, 11000101, 10101010 и т. д. дадут одинаковое среднее значение за период, тем не менее, отдельно стоящие единицы утяжеляют режим работы ключевого транзистора.

Корифеи электроники, повествуя о ШИМ, приводят такую аналогию с механикой. Если при помощи двигателя вращать тяжелый маховик, то поскольку двигатель может быть либо включен, либо выключен, то и маховик будет либо раскручиваться и продолжать вращаться, либо станет останавливаться из-за трения, когда двигатель выключен.

Но если двигатель включать на несколько секунд в минуту, то вращение маховика будет поддерживаться, благодаря инерции, на некоторой скорости. И чем дольше продолжительность включения двигателя, тем до более высокой скорости раскрутится маховик. Так и с ШИМ, на выход приходит сигнал включений и выключений (0 и 1), и в результате достигается среднее значение. Проинтегрировав напряжение импульсов по времени, получим площадь под импульсами, и эффект на рабочем органе будет тождественен работе при среднем значении напряжения.

Так работают преобразователи, где переключения происходят тысячи раз в секунду, и частоты достигают единиц мегагерц. Широко распространены специальные ШИМ-контроллеры, служащие для управления балластами энергосберегающих ламп, блоками питания, преобразователями частоты для двигателей и т. д.

Отношение полной длительности периода импульса ко времени включения (положительной части импульса) называется скважностью импульса. Так, если время включения составляет 10 мкс, а период длится 100 мкс, то при частоте в 10 кГц, скважность будет равна 10, и пишут, что S = 10. Величина обратная скважности называется коэффициентом заполнения импульса, по-английски Duty cycle, или сокращенно DC.

Так, для приведенного примера DC = 0.1, поскольку 10/100 = 0.1. При широтно-импульсной модуляции, регулируя скважность импульса, то есть варьируя DC, добиваются требуемого среднего значения на выходе электронного или другого электротехнического устройства, например двигателя.

Источник: electricalschool.info

Как работает ШИМ

Настала пора разобраться с тем, как работает широтно-импульсная модуляция. Попробуем вникнуть в физику процесса и заодно слегка зацепим режимы работы таймера.

Рассмотрим два графика, с периодически повторяющимся сигналом. Для простоты рассмотрим один период. Так вот, если взять обыкновенный вольтметр и измерить постоянное напряжение, то в первом случае мы измерим 5В. Вроде это не вызывает сомнений.

Что же покажет вольтметр во втором случае? Оказывается период такого сигнала будет эквивалентен некому постоянному напряжению. Величина напряжения, соответственно зависит от величины заполнения импульса (времени когда сигнал будет не нулевой). Условимся, что длительность наличия напряжения и отсутствия равны, т.е. 50% времени сигнал есть, 50% отсутствует, аналогом такого сигнала будет половина полного напряжения, соответственно вольтметр покажет 2,5В.

Кстати, величина заполнения называется скважностью сигнала. По аналогии, когда скважность 100%, сигнал имеет вид прямой линии. Если скважность 70%, то соответственно вольтметр покажет 0,7*5=3,5В. Данный принцип регулирования напряжения называется широтно-импульсной модуляцией.

Теперь перейдем к тому, как формируется скважность сигнала. Для начала, сгенерируем пилообразный сигнал амплитудой 5В. Частота может быть произвольной.

Теперь заведем этот сигнал на компаратор настроенный на 2,5В.

Что же мы увидим на выходе операционного усилителя? Пока сигнал пилы будет увеличиваться от нуля до 2,5В, на выходе компаратора будет минус питания. Но, так как минус питания у нас ноль, значит и на выходе ноль. Как только сигнал на неинвертирующем входе (т.е. пила) станет больше 2,5В, то на выходе ОУ появится 5В. Таким образом 50% времени ОУ будет выдавать логический ноль, 50% времени логическую единицу.

Теперь попробуем изменить скважность до 10%? Если 100% это 5В, то 10% — ? Пересчитываем пропорцией. (10*5)/100=0,5В, настраиваем компаратор на 0,5В и получаем заполнение в 10%.

Тут нас ждет разочарование вместо 10%, получили 90%, что вполне логично, от нуля до 0,5В на выходе ничего нет, но как только напряжение пилы перевалит это значение, на выходе компаратора появляется 5В. Таким образом, мы подошли к первому из режимов таймера, называемому неинвертированный быстрый ШИМ.

Да, это те самые настройки для него и минимальная скважность соответствует 0xFF.

Обратным, более удобным для использованием является режим инвертированного ШИМ. В этом случае достаточно поменять местами инвертирующий и неинвертирующий входы компаратора.

Т.е. при маленьком напряжении на входе компаратора, на выходе будет сигнал с малой скважностью. Так более удобно и понятно. Для таймера режим называется Fast PWM, Output: Inverted.

Для режимов, Phase correct PWM и Phase and frequence correct PWM в качестве опорного используется треугольник. но суть остается той же.

Подобный подход позволяет получить более точное значение ШИМ. Однако несущая частота снижается в два раза.

В режиме Phase Correct PWM, при изменении скважности, значение OCR обновляется только при достижении верхнего значения. Есть мнение, что это позволяет избежать смещения фазы сигнала.

Phase and Frequency Correct PWM хорош тем, что при изменении скважности, значение OCR обновляется только при достижении счетчиком нижнего значения. Т.е. это позволяет избежать смещения частоты сигнала.

Пока примеров использования Phase Correct и Phase and Frequency Correct привести не могу, ибо пока нет подходящего материала, но в ближайшем будущем возможно дополню статью. Зато примеров Fast PWM вполне достаточно.

Источник: avr-start.ru

Ссылка на основную публикацию
Adblock
detector