Медь в таблице менделеева название

Медь в таблице менделеева название

Медь — элемент побочной подгруппы первой группы, четвертого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum).

Атомный номер — 29
Атомная масса — 63,546
Плотность, кг/м³ — 8960
Температура плавления, °С — 1083
Теплоемкость, кДж/(кг·°С) — 0,385
Электроотрицательность — 1,9
Ковалентный радиус, Å — 1,17
1-й ионизац. потенциал, эв — 7,73

Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа — Удокан в Читинской области, Джезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии.

Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,4 до 1,0 %. Физические свойства меди

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра). Имеет два стабильных изотопа — 63Cu и 65Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.

Цвет Меди красный, в изломе розовый, при просвечивании в тонких слоях зеленовато-голубой. Металл имеет гранецентрированную кубическую решетку с параметром а = 3,6074 Å; плотность 8,96 г/см3 (20 °С). Атомный радиус 1,28 Å; ионные радиусы Cu+ 0,98 Å; Сu2+ 0,80 Å; tпл1083 °С; tкип 2600 °С; удельная теплоемкость (при 20 °С) 385,48 дж/(кг·К), т.е. 0,092 кал/(г·°С). Наиболее важные и широко используемые свойства Меди: высокая теплопроводность — при 20 °С 394,279 вт/(м·К.), то есть 0,941 кал/(см·сек·°С); малое электрическое сопротивление — при 20 °С 1,68·10-8 ом·м. Термический коэффициент линейного расширения 17,0·10-6. Давление паров над Медью ничтожно, давление 133,322 н/м2 (т.е. 1 мм рт.ст.) достигается лишь при 1628 °С. Медь диамагнитна; атомная магнитная восприимчивость 5,27·10-6. Твердость Меди по Бринеллю 350 Мн/м2 (т. е. 35 кгс/мм2); предел прочности при растяжении 220 Мн/м2 (т. е. 22 кгс/мм2); относительное удлинение 60%, модуль упругости 132·103 Мн/м2(т.е. 13,2·103 кгс/мм2). Путем наклепа предел прочности может быть повышен до 400-450 Мн/м2, при этом удлинение уменьшается до 2% , а электропроводность уменьшается на 1-3.

Источник: tablica-mendeleeva.ru

Медь — свойства, характеристики свойства

Медь – это пластичный золотисто-розовый металл с характерным металлическим блеском. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Сu (Cuprum) и находится под порядковым номером 29 в I группе (побочной подгруппе), в 4 периоде.

Латинское название Cuprum произошло от имени острова Кипр. Известны факты, что на Кипре ещё в III веке до нашей эры находились медные рудники и местные умельцы выплавляли медь. Купить медь можно в комании «КУПРУМ».

По данным историков, знакомству общества с медью около девяти тысячелетий. Самые древние медные изделия найдены во время археологических раскопок на местности современной Турции. Археологи обнаружили маленькие медные бусинки и пластинки для украшения одежды. Находки датируются рубежом VIII-VII тыс. до нашей эры. Из меди в древности изготавливали украшения, дорогую посуду и различные инструменты с тонким лезвием.

Великим достижением древних металлургов можно назвать получение сплава с медной основой – бронзы.

Основные свойства меди

1. Физические свойства.

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

2. Химические свойства.

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины.
Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды — это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование.
Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.

Следующий этап пирометаллургического способа получения меди – это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Применение меди

Благодаря ценным качествам медь и медные сплавы используются в электротехнической и электромашиностроительной отрасли, в радиоэлектронике и приборостроении. Существуют сплавы меди с такими металлами, как цинк, олово, алюминий, никель, титан, серебро, золото. Реже применяются сплавы с неметаллами: фосфором, серой, кислородом. Выделяют две группы медных сплавов: латуни (сплавы с цинком) и бронзы (сплавы с другими элементами).

Читать еще:  Чем крепить проводку к стене

Медь обладает высокой экологичностью, что допускает её использование в строительстве жилых домов. К примеру, медная кровля за счёт антикоррозионных свойств, может прослужить больше ста лет без специального ухода и покраски.

Медь в сплавах с золотом используется в ювелирном деле. Такой сплав увеличивает прочность изделия, повышает стойкость к деформированию и истиранию.

Для соединений меди характерна высокая биологическая активность. В растениях медь принимает участие в синтезе хлорофилла. Поэтому её можно увидеть в составе минеральных удобрений. Недостаток меди в организме человека может вызвать ухудшение состава крови. Она есть в составе многих продуктов питания. К примеру, этот металл содержится в молоке. Однако важно помнить, что избыток соединений меди может вызвать отравление. Именно поэтому нельзя готовить пищу в медной посуде. Во время кипячения в пищу может попасть большое количество меди. Если же посуда внутри покрыта слоем олова, то опасности отравления нет.

В медицине медь используют, как антисептическое и вяжущее средство. Она является компонентом глазных капель от конъюнктивита и растворов от ожогов.

Источник: cu-prum.ru

1.2.3 Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов

Видеоурок 1: Медь

Лекция: Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов

Переходными называются элементы, содержащие d-/f-элементы и располагающиеся между s + -элементами и р — -элементами. Отличие d- и f-элементов от s- и p-элементов состоит в том, что электроны первых заполняют внутренние nd- или nf- оболочки, тогда как электроны вторых заполняют внешние ns- и np-оболочки.

В Периодической таблице данные элементы находятся в побочных подгруппах 4, 5 и 6 периодов. Все они металлы. Всего их на сегодняшний день 65. Однако по требованию кодификатора на данном уроке мы более подробно рассмотрим медь, цинк, хром и железо.

Медь Cu

Расположение в Периодической таблице

4 период I группа побочная подгруппа, порядковый номер 29

Инертный металл. Относится к d-элементам. Не взаимодействует с водой, некоторыми неметаллами: с водородом, азотом, углеродом, и кремнием, с растворами соляной и серной кислот, с щелочами. Реагирует с конц/растворами серной и азотной кислот.

Золотисто-розовый пластичный, тягучий, легко прокатывается в листы

Отличный электропроводник после серебра. Температура плавления 1083

Расположение электронов по орбиталям (электронная формула или конфигурация)

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1

(в основном состоянии)

1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2

(в возбужденном состоянии)

Наблюдается проскок одного электрона s-подуровня на d-подуровень. Это обеспечивает более устойчивое положение.

Самая устойчивая среди них +2

Обладает основными свойствами

Оксид меди (II) СuО

Обладает амфотерными свойствами с преобладанием основных

Гидроксид меди (I) СuОН

Обладает основными свойствами

Гидроксид меди (II) Cu(ОН)2

Обладает амфотерными свойствами с преобладанием основных

Поскольку в природе медь, как и другие металлы встречается в составе соединений, то для получения простого вещества Cu применяются:

1. Пирометаллургический способ – восстановление металла при высоких t с помощью водорода, оксида угля.

2. Гидрометаллургический способ – восстановление из солей в растворах.

Вначале соединение растворяется кислотой, к примеру:

Затем Cu из CuSO4 вытесняется более активным металлом, допустим Fe:

Этот процесс называется металлотермией.

3. Электролиз – способ получения металлов с помощью электрического тока.

Это последний этап обработки руды, содержащей медь. В специальные ванны, наполненные водным раствором сульфата меди CuSO4 со свободной серной кислотой:

катод (–): Cu 2+ + 2ē → Cu 0

Применение в быту

Медь — производство проводов, кабелей, котлов.

Латунь (сплав из меди и цинка) — производство радиаторов, конденсаторов, часовых механизмов, ювелирных изделий.

Медноникелевые сплавы – производство устройств для дистиллирования питьевой воды из морской.

Медь в составе бронзы — в машиностроении.

Оксиды меди – производство эмали, стекла.

Соли меди ядовиты и используются огородниками для уничтожения вредителей растений. Медь в составе удобрений, способствует хорошему росту растений.

*Римские цифры в таблице указана валентность

Цинк Zn

Расположение в Периодической таблице

4 период II группа побочная подгруппа, порядковый номер 30

Амфотерный металл. Не взаимодействует с водородом, азотом, бором, кремнием, углеродом. Не растворяется в воде, но при очень высокой t реагирует на водяной пар, образуя оксид цинка и водорода. Реагирует с щелочами. Из растворов солей и оксидов, вытесняет металлы, расположенные правее в ряду напряжений*

Хрупкий металл голубовато-белого цвета

Расположение электронов по орбиталям

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2

(в основном состоянии)

Оксид цинка ZnO

Обладает амфотерными свойствами

Гидроксид цинка Zn(ОН)2

Обладает амфотерными свойствами

1. Пирометаллургический способ

С помощью оксида угля: ZnO+ C t → CO + Zn

2. Гидрометаллургический способ

Поскольку цинк в ряду напряжений стоит после Al и до Н, то на катоде будут протекать два процесса восстановления ионов цинка и водорода (т.к. среда кислая):

Zn 2+ + 2e → Zn↓
2H + + 2e → H2

Реакция в сумме:

катод (–): Zn 2+ + 2H + + 4ē → Zn↓ + H2↑ (восстановление);

анод (+): Zn – 2ē → Zn 2+ (окисление).

2Zn + Zn 2+ + 2H + → 2Zn 2+ + Zn↓ + H2
2Zn + 2H + → Zn 2+ + Zn↓ + H2

Применение в быту

Применение цинка объемно и широко, к примеру, используется:

для защиты от ржавчины (оцинковки) стали;

в строительстве для кровли крыш, облицовки стен;

для производства бытовой техники и мн.др.

*Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Cr→ Zn →Fe→Cd→Co→Ni→Sn→Pb→H→Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au

Хром Cr

Расположение в Периодической таблице

4 период VI группа побочная подгруппа, порядковый номер 24

Не взаимодействует с водородом. Вытесняет его из неокисляющих кислот: соляной, фосфорной и др. При сильном нагревании хром растворяется в серной или азотной кислотах.

Твердый металл голубовато-белого цвета

Расположение электронов по орбиталям

1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

(в основном состоянии)

Повышение степени ведет к возрастанию кислотности и ослабеванию основных свойств. Наиболее устойчивая степень +3

Оксид хрома (II) — СгО

Обладает основными свойствами

Обладает амфотерными свойствами

Оксид хрома (VI) СгО3

Обладает кислотными свойствами (Н2СгО4 – хромовая кислота и дихромовая Н2Cr2О7).

Гидроксид хрома (II) Сг(ОН)2

Обладает основными свойствами

Гидроксид хрома (III) Сг(ОН)3

Обладает амфотерными свойствами

1. Пирометаллургический способ

Например, алюмотермией (вид металлотермии):

Из концентрированных водных растворов СrО3 или Сr2О3, содержащих H2SO4, либо электролизом сульфата Хрома Cr2(SO4)3 хром получают в наиболее чистом виде.

Применение в быту

В производстве нержавеющей стали.

Для покрытия металлических поверхностей (хромирование) в качестве защиты.

Для изготовления декоративных изделий.

Соли хрома ядовиты и используются для защиты древесины от вредителей.

Для изготовления красителей и мн.др.

Железо Fe

Расположение в Периодической таблице

4 период VIII группа побочная подгруппа, порядковый номер 26

При нагревании более 200 0 взаимодействует с кислородом. Окисляется в воде.

Ковкий металл серебристо-белого цвета

Расположение электронов по орбиталям

1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

(в основном состоянии)

Из них самая устойчивая +3;

Fe +6 — сильнейший окислитель

Оксид железа (II) FeО

Обладает основными свойствами

Обладает амфотерными свойствами с преобладанием основных

Гидроксид железа (II) Fe(ОН)2

Обладает основными свойствами

Гидроксид железа (III) Fe(ОН)3

Обладает амфотерными свойствами с преобладанием основных

1. Пирометаллургический способ

1. Алюмотермия – восстановление Fe из оксида с помощью алюминия при высоких t:

2. Сначала оксид железа подвергается магнитному обогащению:

а затем запускается процесс водородотермии:

2H2O + 2ē → H2↑+ 2ОН — (восстановление);

2Cl — – 2ē → Cl2↑ (окисление).

Реакция в сумме:
2О +2FeCl3 → 3H2↑ + 3Cl2↑+2Fe(OH)3

Применение в быту

Отрасли применения весьма обширны и известны.

Источник: cknow.ru

ПОЛОЖЕНИЕ МЕДИ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА

СТРОЕНИЕ АТОМА, СВОЙСТВА

Медь (Cuprum), Сu — химический элемент побочной подгруппы первой группы периодической системы элементов Д.И. Менделеева, расположен в IV большом периоде. Порядковый номер 29, относительная атомная масса 63,54.

2 8 18 1 медь соединение химический

Распределение электронов в атоме меди -Is22s22p63s23p63d104s1.

Степени окисления меди в соединениях +1, +2.

Природная медь состоит из смеси 2-х стабильных изотопов с массовыми числами 63 (69,1%) и 65 (30,9%). Эти изотопы обладают высокой удельной активностью и используются в качестве меченых атомов.В химическом отношении медь занимает промежуточное положение между элементами первой плеяды VIII группы и щелочными элементами I группы периодической системы.

Техническая медь — металл красного, в изломе розового цвета, при просвечивании в тонких слоях — зеленовато-голубой. Медь, как и ее аналоги, серебро и золото, относительно малоактивна. Однако, в отличие от серебра и золота, она непосредственно реагирует с кислородом. Заметным образом этот процесс идет при нагревании. При температуре 100-150 0 С в основном образуется оксид меди (I) Cu2O, который по цвету почти не отличается от меди. При дальнейшем нагревании до температуры 200 0С получается смесь оксида меди (I) и оксида меди (II) CuO. При еще более высокой температуре медь воспламеняется, она горит зеленым пламенем, и в результате образуется оксид меди (II) черного цвета. Если температуру увеличить до 10000 С, то CuO разлагается на оксид меди (I) и кислород O2.

Основные физические свойства меди:

Температура плавления, °С — 1083

Температура кипения, °С — 2600

Медь — вязкий, мягкий и ковкий металл, уступающий только серебру высокой теплопроводностью и электропроводностью, электрическая проводимость меди в 1,7 раза выше, чем алюминия, и в 6 раз выше железа Эти качества, а также пластичность и сопротивление коррозии обусловили широкое применение меди в промышленности.

При комнатной температуре на воздухе медь покрывается защитной пленкой, состав которой зависит от примесей, содержащихся в воздухе. Так во влажном воздухе образуется смесь оксида меди (I) с гидроксидом меди (II):

Cu(OH)2 + Cu > Cu2O + H2O

Медь также реагирует с серой, селеном и теллуром, образуя соответственно СuS, CuSe, CuTe.

C водородом и азотом медь не реагирует даже при нагревании. Легче всего медь взаимодействует с галогенами, влажный хлор взаимодействует при комнатной температуре:

Водный раствор йода реагирует с медью на холоде, бром при температуре 3000С, фтор при 5000С. Присутствие влаги и действие света ускоряют эти реакции.

Медь и ее аналоги в ряду напряжения располагаются после водорода, поэтому остальные металлы вытесняют ее из растворов солей:

Fe + CuSO4 > Cu + FeSO4

В свою очередь медь вытесняет из растворов солей менее активные металлы:

Cu + Hg(NO3)2 > Cu(NO3)2 + Hg

Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют. С концентрированной серной кислотой медь реагирует при нагревании:

Cu + 2H2SO4(k.) > CuSO4 + SO2 + 2H2O

В азотной кислоте в зависимости от ее концентрации медь растворяется с образованием оксидов азота и нитрата меди (II)^

Источник: studwood.ru

Медь, свойства, соединения, сплавы, производство, применение

Медь

Медь (лат. Cuprum) — химический элемент I группы периодической системы Менделеева (атомный номер 29, атомная масса 63,546). В соединения медь обычно проявляет степени окисления +1 и +2, известны также немногочисленные соединения трехвалентной меди. Важнейшие соединения меди: оксиды Cu2O, CuO, Cu2O3; гидроксид Cu(OH)2, нитрат Cu(NO3)2 . 3H2O, сульфид CuS, сульфат(медный купорос) CuSO4 . 5H2O, карбонат CuCO3Cu(OH)2, хлорид CuCl2 . 2H2O.

Медь — один из семи металлов, известных с глубокой древности. Переходный период от каменного к бронзовому веку (4 — 3-е тысячелетие до н.э.) назывался медным веком или халколитом (от греческого chalkos — медь и lithos — камень) или энеолитом (от латинского aeneus — медный и греческого lithos — камень). В этот период появляются медные орудия. Известно, что при возведении пирамиды Хеопса использовались медные инструменты.

Чистая медь — ковкий и мягкий металл красноватого, в изломе розового цвета, местами с бурой и пестрой побежалостью, тяжелый (плотность 8,93 г/см 3 ), отличный проводник тепла и электричества, уступая в этом отношении только серебру (температура плавления 1083 °C). Медь легко вытягивается в проволоку и прокатывается в тонкие листы, но сравнительно мало активна. В сухом вохдухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соотвествующих солей: 2Cu + 4HCl + O2 = 2CuCl2 + 2H2O.

В атмосфере, содержащей CO2, пары H2O и др., покрывается патиной — зеленоватой пленкой основного карбоната (Cu2(OH)2CO3)), ядовитого вещества.

Медь входит более чем в 170 минералов, из которых для промышленности важны лишь 17, в том числе: борнит (пестрая медная руда — Cu5FeS4), халькопирит (медный колчедан — CuFeS2), халькозин (медный блеск — Cu2S), ковеллин (CuS), малахит (Cu2(OH)2CO3). Встречается также самородная медь.

Плотность меди, удельный вес меди и другие характеристики меди

Плотность — 8,93*10 3 кг/м 3 ;
Удельный вес — 8,93 г/cм 3 ;
Удельная теплоемкость при 20 °C — 0,094 кал/град;
Температура плавления — 1083 °C ;
Удельная теплота плавления — 42 кал/г;
Температура кипения — 2600 °C ;
Коэффициент линейного расширения (при температуре около 20 °C) — 16,7 *10 6 (1/град);
Коэффициент теплопроводности — 335ккал/м*час*град;
Удельное сопротивление при 20 °C — 0,0167 Ом*мм 2 /м;

Модули упругости меди и коэффициент Пуассона

Наименование материала Модуль Юнга, кГ/мм 2 Модуль сдвига, кГ/мм 2 Коэффициент Пуассона
Медь, литье 8400
Медь прокатанная 11000 4000 0,31-0,34
Медь холоднотянутая 13000 4900

СОЕДИНЕНИЯ МЕДИ

Оксид меди (I) Cu2O3 и закись меди (I) Cu2O, как и другие соединения меди (I) менее устойчивы, чем соединения меди (II). Оксид меди (I), или закись меди Cu2O в природе встречается в виде минерала куприта. Кроме того, она может быть получена в виде осадка красного оксида меди (I) в результате нагревания раствора соли меди (II) и щелочи в присутствии сильного восстановителя.

Оксид меди (II), или окись меди, CuO — черное вещество, встречающееся в природе (например в виде минерала тенерита). Его получают прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO2)2.
Оксид меди (II) хороший окислитель. Гидроксид меди (II) Cu(OH)2 осаждается из растворов солей меди (II) при действии щелочей в виде голубой студенистой массы. Уже при слабом нагревании даже под водой он разлагается, превращаясь в черный оксид меди (II).
Гидроксид меди (II) — очень слабое основание. Поэтому растворы солей меди (II) в большинстве случаев имеют кислую реакцию, а со слабыми кислотами медь образует основные соли.

Сульфат меди (II) CuSO4 в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Водный раствор сульфата меди имеет характерный сине-голубой цвет. Эта окраска свойственна гидратированным ионам [Cu(H2O)4] 2+ , поэтому такую же окраску имеют все разбавленные растворы солей меди (II), если только они не содердат каких-либо окрашенных анионов. Из водных растворов сульфат меди кристаллизуется с пятью молекулами воды, образуя прозрачные синие кристаллы медного купороса. Медный купорос применяется для электролитического покрытия металлов медью, для приготовления минеральных красок, а также в качестве исходного вещества при получении других соединений меди. В сельском хозяйстве разбавленный раствор медного купороса применяется для опрыскивания растений и протравливания зерна перед посевом, чтобы уничтожить споры вредных грибков.

Хлорид меди (II) CuCl2 . 2H2O. Образует темно-зеленые кристаллы, легко растворимые в воде. Очень концентрированные растворы хлорида меди (II) имеют зеленый цвет, разбавленные — сине-голубой.

Нитрат меди (II) Cu(NO3)2 . 3H2O. Получается при растворении меди в азотной кислоте. При нагревании синие кристаллы нитрата меди сначала теряют воду, а затем легко разлагаются с выделением кислорода и бурого диоксида азота, переходя в оксид меди (II).

Гидроксокарбонат меди (II) (CuOH)2CO3. Встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зеленый цвет. Искусственно приготовляется действием Na2CO3 на растворы солей меди (II).
2CuSO4 + 2Na2CO3 + H2O = (CuOH)2CO3↓ + 2Na2SO4 + CO2
Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике.

Ацетат меди (II) Cu (CH3COO)2 . H2O. Получается обработкой металлической меди или оксида меди (II) уксусной кислотой. Обычно представляет собой смесь основных солей различного состава и цвета (зеленого и сине-зеленого). Под названием ярь-медянка применяется для приготовления масляной краски.

Комплексные соединения меди образуются в результате соединения двухзарядных ионов меди с молекулами аммиака.
Из солей меди получают разноообразные минеральные краски.
Все соли меди ядовиты. Поэтому, чтобы избежать образования медных солей, медную посуду покрывают изнутри слоем олова (лудят).

ПРОИЗВОДСТВО МЕДИ

Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд. Процесс состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования. В процессе обжига большая часть примесных сульфидов превращается в оксиды. Так, главная примесь большинства медных руд пирит FeS2 превращается в Fe2O3. Газы, образующиеся при обжиге, содержат CO2, который используется для получения серной кислоты. Получающиеся в процессе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Жидкий медный штейн (Cu2S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь. Для извлечения ценных (Au, Ag, Te и т.д.) и для удаления вредных примесей черновая медь подвергается сначала огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка и кобальта окисляются, переходят в шлак и удаляются. А медь разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании.
Основным компонентом раствора при электролитическом рафинировании служит сульфат меди — наиболее распространенная и дешевая соль меди. Для увеличения низкой электропроводности сульфата меди в электролит добавляют серную кислоту. А для получения компактного осадка меди в раствор вводят небольшое количество добавок. Металлические примеси, содержащиеся в неочищенной («черновой») меди, можно разделить на две группы.

1)Fe, Zn, Ni, Co. Эти металлы имеют значительно более отрицательные электродные потенциалы, чем медь. Поэтому они анодно растворяются вместе с медью, но не осаждаются на катоде, а накапливаются в электролите в виде сульфатов. Поэтому электролит необходимо периодически заменять.

2)Au, Ag, Pb, Sn. Благородные металлы (Au, Ag) не претерпевают анодного растворения, а в ходе процесса оседают у анода, образуя вместе с другими примесями анодный шлам, который периодически извлекается. Олово же и свинец растворяются вместе с медью, но в электролите образуют малорастворимые соединения, выпадающие в осадок и также удаляемые.

СПЛАВЫ МЕДИ

Сплавы, повышающие прочность и другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.

Латуни — сплавы меди с цинком ( меди от 60 до 90% и цинка от 40 до 10%) — прочнее меди и менее подвержены окислению. При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость. Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.

Бронзы. Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.

Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.

Свинцовые бронзы, содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.

Кремниевые бронзы, содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.

Бериллиевые бронзы, содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.

Кадмиевые бронзы — сплавы меди с небольшим количества кадмия (до1%) — используют для изготовления арматуры водопроводных и газовых линий и в машиностроении.

Припои — сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31%Cu; остальное — цинк).

ПРИМЕНЕНИЕ МЕДИ

Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности.

В электротехнике медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты, трубопроводы. Более 30% меди идет на сплавы.

Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры.

Высокая вязкость и пластичность металла позволяют применять медь для изготовления разнообразных изделий с очень сложным узором. Проволока из красной меди в отожженном состоянии становится настолько мягкой и пластичной, что из нее без труда можно вить всевозможные шнуры и выгибать самые сложные элементы орнамента. Кроме того, проволока из меди легко спаивается сканым серебряным припоем, хорошо серебрится и золотится. Эти свойства меди делают ее незаменимым материалом при производстве филигранных изделий.

Коэффициент линейного и объемного расширения меди при нагревании приблизительно такой же , как у горячих эмалей, в связи с чем при остывании эмаль хорошо держится на медном изделии, не трескается , не отскакивает. Благодаря этому мастера для производства эмалевых изделий предпочитают медь всем другим металлам.

Как и некоторые другие металлы, медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата — медного купороса CuSO4 . 5H2O. В большом количестве он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь необходима всему живому.

Источник: tehtab.ru

Ссылка на основную публикацию
Adblock
detector