Материал для изготовления фрез

Материал для изготовления фрез

Обработка дерева и металла

Материалы, применяемые для изготовления фрез, должны обладать следующими свойствами: высокой твердостью, превышающей твердость обрабатываемого материала, высокой износостойкостью и теплостойкостью, высокой механической прочностью. Для изготовле-

ния режущих инструментов и, в частности, фрез применяют углеродистые легированные инструментальные стали, быстрорежущие инструментальные стали, твердые сплавы, минерало-керамику, сверхтвердые материалы, синтетические и естественные алмазы.

Для изготовления режущего инструмента применяют инструментальные углерод-истые стали следующих марок: У7, У8, У9, У10, У11, У12, У13 (буква У указывает на то, что сталь углеродистая, а цифры показывают среднее содержание углерода в десятых долях процента). Инструментальные стали повышенного качества, имеющие минимальное количество вредных примесей, отмечают буквой А: У10А, У8А и т. д. Углеродистая инструментальная сталь обладает низкими режущими свойствами. Режущие инструменты, изготовленные из такой стали, позволяют вести обработку при температуре в зоне резания до 200—250 °С и при скоростях резания в пределах 10— 15 м/мин.

Легированная инструментальная сталь по химическому составу отличается от углеродистой инструментальной стали лишь наличием одного или нескольких легирующих элементов: хрома, вольфрама, молибдена, ванадия. Чаще всего для изготовления прорезных, фасонных и концевых фрез малых диаметров применяют следующие марки стали: ХГ, ХВ5, 9ХС и ХВГ . Легированная инструментальная сталь обладает более высокими режущими свойствами, чем углеродистая инструментальная сталь (температура в зоне резания 300—350 °С, скорость резания 20— 25 м/мин).

Быстрорежущая инструментальная стальв отличие от углеродистой и легированной инструментальной стали обладает большим сопротивлением износу и большой теплостойкостью. Она обладает красностойкостью, т. е. не теряет своих свойств при температуре красного каления (550—600 °С)

В СССР установлены единые условные обозначения (из букв и цифр) химического состава стали. Первые две цифры показывают среднее содержание углерода, буквами обозначают легированные элементы (В — вольфрам, Ф — ванадий, К — кобальт, М — молибден и т. д.), а цифрами справа от буквы — их среднее содержание (в процентах). Буквой Р обозначают быстрорежущую сталь.

В настоящее время наибольшее применение для изготовления всех видов цежущего инстру-. мента при обработке обычных конструкционных материалов применяются следующие марки стали: Р6М5, Р6МЗ и Р12. В последнее время УкрНИИспецсталь разработал новую марку быстрорежущей стали 11АРЗМЗФ2 с пониженным содержанием вольфрама (1,1% углерода, азот, ванадий, молибден).

Для обработки высокопрочных нержавею-щих сталей и сплавов в условиях повышенного j разогрева режущих кромок, а также для обработки сталей и сплавов повышенной твердости и вязкости при работе с ударами применяют I следующие марки стали: Р18КФ2, Р10К5ФЗ, Р9К5, Р6М5К5, Р12Ф2К8МЗ, Р9М4К8 и др. Эти марки часто применяются также для изготовления зуборезного инструмента.

Твердые сплавы допускают работу со скоростями резания, превышающими в 5— 10 раз скорости обработки быстрорежущими I инструментальными сталями, и не теряют режущих свойств при температуре до 80 °С и выше. Металлокерамические твердые сплавы I состоят из карбидов вольфрама, титана или тантала и кобальта, связывающего эти вещества. Различают вольфрамо-кобальтовые металлокерамические сплавы (ВК2, ВКЗ , ВКЗМ , ВК6, ВК6М, ВК5Н, ВК10, ВК10М, ВК15М, ВК8, ВК6-ОМ, ВК8-ОМ, ВКЮ -ОМ, ВК15-ОМ и др.) и титаново-вольфрамо-кобальтовые (Т5К10, Т14К8, Т15К6, Т30К4, Т60К6 и др.). Цифры после букв указывают процентное содержание в сплаве кобальта и титана.

Например, сплав Т14К8 состоит из 14% карбида титана, 8% кобальта и 78% карбида вольфрама.

Выпускают трехкарбидные твердые сплавы, состоящие из кобальта (связки) и карбидов вольфрама, титана, тантала. Эти сплавы характеризуются высокой прочностью. Твердый сплав марки ТТ7К12 допускает работу в 1,5—2 раза большими подачами на зуб, чем сплав Т5К10. Твердые сплавы выпускаются в виде пластинок стандартных форм и размеров.

Вольфрамо-кобальтовые сплавы применяют для обработки хрупких материалов: чугуна, бронзы, закаленной стали, пластмасс, фарфора и т. п. Твердые сплавы титано-вольфрамовой группы предназначены главным образом для обработки сталей. Сплав ТТ20К9 специально предназначен для фрезерования стали (например, для фрезерования глубоких пазов). Он отличается повышенным сопротивлением тепловым и механическим циклическим нагрузкам. Наиболее прочными сплавами при черновой обработке стали являются сплавы марок ТТ7К12 и Т5К12Б.

С уменьшением размеров зерен карбидов вольфрама износостойкость и твердость сплава увеличиваются. Эту закономерность используют при создании сплавов различного назначения с требуемыми свойствами. Первыми мелкозернистыми сплавами были сплавы марок ВКЗМ и ВК6М. В последнее время разработаны твердые сплавы с особо мелкозернистой (ОМ) структурой — ВК6-ОМ, ВКЮ -ОМ и ВК15-ОМ.

Стойкость твердосплавного инструмента повышается при нанесении на его поверхность изностойких слоев (5—15 мкм) карбидов (титана, ниобия), боридов, нитридов и др.

Минерал о керамическ ие спла-в ы приготовляют на основе окиси алюминия А/203 (корунда) путем тонкого размола, прессования и спекания. Выпускают их, как и твердые сплавы, в виде пластинок стандартных форм и размеров. В настоящее время промышленное применение имеют две марки минеральной керамики: ЦМ-332 и ВЗ. Минеральная керамика марки ВЗ обладает большей (в 1,5—2 раза) прочностью по сравнению с керамикой марки ЦМ-332. В состав керамики марки ВЗ помимо окиси алюминия входят сложные карбиды тугоплавких металлов.

Минералокерамические пластинки обладают большей теплостойкостью и износостойкостью, чем некоторые твердые сплавы. Однако они имеют пониженную по сравнению с твердыми сплавами прочность и повышенную хрупкость. Минералокерамика находит применение при чистовом и тонком фрезеровании торцовыми фрезами (головками) с неперетачиваемыми пластинками.

Сверхтвердые материалы ( СТМ ) являются поликристаллическим образованием на основе кубического нитрида бора. В эту группу входят композит 01 (эльбор-Р), композит 05 и композит 10 (гексанит-Р), ПТНБ (поликристалл твердого нитрида бора), «зубр», «бел-бор» и др.

Сверхтвердые материалы значительно превосходят минеральную керамику и твердые сплавы по термоусталостной прочности. Эль-бор-Р, гексанит-Р, ПТНБ и др. применяют для оснащения резцов, фрез, а также при изготовлении абразивного инструмента для заточки металлического (лезвийного) инструмента.

Сверхтвердые материалы для металлического инструмента выпускаются в виде цилиндрических вставок диаметром от 4 до 8 мм и длиной от 4 до 8 мм.

Читать еще:  Коронки для сверления металла

Сверхтвердые материалы на основе нитрида бора химически инертны к черным металлам, а материалы на основе углерода (алмазы) к ним химически активны. Это различие и определяет область их применения: сверхтвердые материалы применяются для обработки сталей, чугу-нов, ряда труднообрабатываемых сплавов; поликристаллические алмазы — для обработки цветных металлов, титановых сплавов, стеклопластиков и др. Для обработки сверхтвердых материалов можно применять только алмазы, которые превосходят их по твердости.

Синтетические алмазы (типа «карбонадо» и «баллас») выпускаются в виде порошков и кристаллов. Из синтетических

алмазных порошков изготовляют алмазно-абразивные инструменты. Круги из синтетических алмазов успешно применяются при заточке и доводке твердосплавных режущих инструментов (в том числе и фрез), а также для шлифования и доводки драгоценных камней, в том числе и самого алмаза. Алмазные резцы и фрезы применяют в основном в качестве чистового (отделочного) инструмента при резании цветных металлов, сплавов и неметаллических материалов.

Источник: pereosnastka.ru

Материалы, применяемые для изготовления фрез

Автор: stonemoscow · Опубликовано 21.11.2012 · Обновлено 01.09.2018

Материалы, используемые для того чтобы, должны владеть следующими особенностями: высокой твердостью, превышающей твердость обрабатываемого материала, высокой износостойкостью и теплоустойчивостью, большой механической прочностью. Для изготовле-

ния режущих инструментов и, например, фрез используют углеродистые легированные инструментальные стали, быстрорежущие инструментальные стали, жёсткие сплавы, минерало-керамику, сверхтвердые материалы, синтетические и естественные бриллианты.

Для изготовления режущего инструмента используют инструментальные углерод-истые стали следующих марок: У7, У8, У9, У10, У11, У12, У13 (буква У показывает на то, что сталь углеродистая, а цифры показывают среднее содержание углерода в десятых долях процента). Инструментальные стали повышенного качества, имеющие предельное число вредных примесей, отмечают буквой А: У10А, У8А и т. д. Углеродистая инструментальная сталь владеет низкими режущими особенностями.

Режущие инструменты, изготовленные из таковой стали, разрешают вести обработку при температуре в зоне резания до 200—250 °С и при скоростях резания в пределах 10— 15 м/мин.

Легированная инструментальная сталь по составу отличается от углеродистой инструментальной стали только наличием одного либо нескольких легирующих элементов: хрома, вольфрама, молибдена, ванадия. Значительно чаще для изготовления прорезных, фасонных и концевых фрез малых диаметров используют следующие марки стали: ХГ, ХВ5, 9ХС и ХВГ.

Легированная инструментальная сталь владеет более высокими режущими особенностями, чем углеродистая инструментальная сталь (температура в зоне резания 300—350 °С, скорость резания 20— 25 м/мин).

Быстрорежущая инструментальная стальв отличие от углеродистой и легированной инструментальной стали владеет громадным сопротивлением износу и громадной теплоустойчивостью. Она владеет красностойкостью, т. е. не теряет собственных особенностей при температуре красного каления (550—600 °С)

В СССР установлены единые условные обозначения (из цифр и букв) состава стали. Первые две цифры показывают среднее содержание углерода, буквами обозначают легированные элементы (В — вольфрам, Ф — ванадий, К — кобальт, М — молибден и т. д.), а цифрами справа от буквы — их среднее содержание (в процентах).

Буквой Р обозначают быстрорежущую сталь.

На данный момент громаднейшее использование для изготовления всех видов цежущего инстру-. мента при обработке простых конструкционных материалов используются следующие марки стали: Р6М5, Р6МЗ и Р12. Сейчас УкрНИИспецсталь создал новую марку быстрорежущей стали 11АРЗМЗФ2 с пониженным содержанием вольфрама (1,1% углерода, азот, ванадий, молибден).

Для обработки высокопрочных нержавею-щих сплавов и сталей в условиях повышенного j разогрева режущих кромок, и для сплавов и обработки сталей вязкости и повышенной твёрдости при работе с ударами используют I следующие марки стали: Р18КФ2, Р10К5ФЗ, Р9К5, Р6М5К5, Р12Ф2К8МЗ, Р9М4К8 и др. Эти марки довольно часто используются кроме этого для того чтобы изготовить.

Жёсткие сплавы допускают работу со скоростями резания, превышающими в 5— 10 раз скорости обработки быстрорежущими I инструментальными сталями, и не теряют режущих особенностей при температуре до 80 °С и выше. Металлокерамические жёсткие сплавы I складываются из карбидов вольфрама, титана либо кобальта и тантала, связывающего эти вещества.

Различают вольфрамо-кобальтовые металлокерамические сплавы (ВК2, ВКЗ, ВКЗМ, ВК6, ВК6М, ВК5Н, ВК10, ВК10М, ВК15М, ВК8, ВК6-ОМ, ВК8-ОМ, ВКЮ-ОМ, ВК15-ОМ и др.) и титаново-вольфрамо-кобальтовые (Т5К10, Т14К8, Т15К6, Т30К4, Т60К6 и др.). Цифры по окончании букв показывают процентное содержание в сплаве титана и кобальта.

К примеру, сплав Т14К8 складывается из 14% карбида титана, 8% карбида и 78% кобальта вольфрама.

Производят трехкарбидные жёсткие сплавы, складывающиеся из кобальта (связки) и карбидов вольфрама, титана, тантала. Эти сплавы характеризуются большой прочностью.

Жёсткий сплав марки ТТ7К12 допускает работу в 1,5—2 раза громадными подачами на зуб, чем сплав Т5К10. Жёсткие сплавы выпускаются в виде пластинок стандартных размеров и форм.

Вольфрамо-кобальтовые сплавы используют для обработки хрупких материалов: чугуна, латуни, закаленной стали, пластмасс, фарфора и т. п. Жёсткие сплавы титано-вольфрамовой группы предназначены в основном для обработки сталей. Сплав ТТ20К9 специально предназначен для фрезерования стали (к примеру, для фрезерования глубоких пазов).

Он отличается повышенным сопротивлением тепловым и механическим циклическим нагрузкам. самые прочными сплавами при черновой обработке стали являются сплавы марок ТТ7К12 и Т5К12Б.

С уменьшением размеров зерен карбидов вольфрама износостойкость и твердость сплава возрастают. Эту закономерность применяют при создании сплавов разного назначения с требуемыми особенностями.

Первыми мелкозернистыми сплавами были сплавы марок ВКЗМ и ВК6М. Сейчас созданы жёсткие сплавы с очень мелкозернистой (ОМ) структурой — ВК6-ОМ, ВКЮ-ОМ и ВК15-ОМ.

Стойкость твердосплавного инструмента увеличивается при нанесении на его поверхность изностойких слоев (5—15 мкм) карбидов (титана, ниобия), боридов, нитридов и др.

Минерал о керамическ ие спла-в ы приготовляют на базе окиси алюминия А/203 (корунда) методом узкого размола, спекания и прессования. Производят их, как и жёсткие сплавы, в виде пластинок стандартных размеров и форм.

На данный момент промышленное использование имеют две марки минеральной керамики: ЦМ-332 и ВЗ. Минеральная керамика марки ВЗ владеет большей (в 1,5—2 раза) прочностью если сравнивать с керамикой марки ЦМ-332.

Читать еще:  Формула для расчета периода колебаний пружинного маятника

В состав керамики марки ВЗ кроме окиси алюминия входят сложные карбиды тугоплавких металлов.

Минералокерамические пластинки владеют большей теплоустойчивостью и износостойкостью, чем кое-какие жёсткие сплавы. Но они имеют пониженную если сравнивать с жёсткими сплавами прочность и повышенную хрупкость.

Минералокерамика применяется при чистовом и узком фрезеровании торцовыми фрезами (головками) с неперетачиваемыми пластинками.

Сверхтвердые материалы (СТМ) являются поликристаллическим образованием на базе кубического нитрида бора. В эту группу входят композит 01 (эльбор-Р), композит 05 и композит 10 (гексанит-Р), ПТНБ (поликристалл жёсткого нитрида бора), «зубр», «бел-бор» и др.

Сверхтвердые материалы существенно превосходят твёрдые сплавы и минеральную керамику по термоусталостной прочности. Эль-бор-Р, гексанит-Р, ПТНБ и др. используют для оснащения резцов, фрез, и при изготовлении абразивного инструмента для заточки железного (лезвийного) инструмента.

Сверхтвердые материалы для железного инструмента выпускаются в виде цилиндрических вставок диаметром от 4 до 8 мм и длиной от 4 до 8 мм.

Сверхтвердые материалы на базе нитрида бора химически инертны к тёмным металлам, а материалы на базе углерода (бриллианты) к ним химически активны. Это различие и определяет область их применения: сверхтвердые материалы используются для обработки сталей, чугу-нов, последовательности труднообрабатываемых сплавов; поликристаллические бриллианты — для обработки цветных металлов, титановых сплавов, стеклопластиков и др.

Для обработки сверхтвердых материалов возможно использовать лишь бриллианты, каковые превосходят их по твердости.

Синтетические бриллианты (типа «карбонадо» и «баллас») выпускаются в виде порошков и кристаллов. Из синтетических

алмазных порошков изготовляют алмазно-абразивные инструменты. Круги из синтетических алмазов удачно используются при доводке и заточке твердосплавных режущих инструментов (среди них и фрез), и для доводки и шлифования драгоценных камней, среди них и самого бриллианта.

фрезы и Алмазные резцы используют по большей части в качестве чистового (отделочного) инструмента при резании цветных металлов, неметаллических материалов и сплавов.

Как делаются фрезы Димар. Dimar. How router bits are made

Источник: stonemoscow.ru

Материал для изготовления фрез.

Для изготовления режущей части фрез применяют:

Углеродистые инструментальные стали марки У12А и легированные инструментальные стали ХГ, 9ХС, ХВ5 и ХВГ. Их применяют для фрез при обработке сталей мягких и средней твердости при скорости резания до 30 м/мин или при работе в зоне малых подач до 0,05мм. При этом стали ХГ и ХВГ применяют для фасонных фрез, стали ХВ5 для фрез которые обрабатывают с малой скоростью твердые материалы.

Быстрорежущие стали Р18 и Р9. Лучшие результаты достигаются при использовании стали Р18, поскольку сталь З9 требует тщательной термообработки с узким интервалом температуры нагрева.

Нормальные рыночные фрезы изготовляются из стали Р18, но ГОСТ разрешает применение по соглашению с потребителем стали Р9.

Для обработки жаропрочных сталей и сталей, обладающих пониженной обрабатываемостью, рекомендуется применять быстрорежущие стали, легированные кобальтом (марка Р9К10) или ванадием (Р18Ф2).

Изготовление из стали фрезы после термической обработки должны иметь твердость в пределах HRC 62-65.

Металлокерамические пластинки (титано-вольфрамовые типа ТК и вольфрамовые типа ВК). Для фрезерования стали предназначаются марки Т5К10, Т15К6 и Т30К4; для фрезерования чугуна, бронзы, латуни, легких сплавов и неметаллических материалов — марки ВК8 и ВК6.

Корпусы сборных фрез изготовляют из стали марки 40Х, либо марок 40 и 45 с последующей термообработкой до твердости HRC 35-42. При больших диаметрах фрез (D>400мм) корпусы изготовляют из модифицированного чугуна.

Державки ножей, применяемые в сборных фрезах изготовляют из стали 45 или У8А без термообработки.

Материалом для изготовления клиньев для крепления ножей служат сталь марки 40Х, сталь марок У7 и У8 или сталь марки 45 с последующей термообработкой до твердости HRC 40-50.

Хвостовики. Концевые фрезы из быстрорежущей стали выполняют сварными. Хвостовик изготовляется из стали марки 40Х. твердость хвостовика должна быть не ниже HRC 35.

Источник: bs111.ru

Материал для изготовления концевых фрез

Материалы, из которых изготавливаются концевые фрезы, должен соответствовать следующим требованиям:

  • быть тверже обрабатываемого материала;
  • обладать высокой механической стойкостью;
  • противостоять быстрому износу;
  • быть устойчивым к воздействию высоких температур.

Еще совсем недавно концевые фрезы делались из разных видов стали: углеродистых легированных, инструментальных, быстрорежущих. Но современные технологии не стоят на месте. Сегодня список материалов для производства концевых фрез значительно расширился. В него вошли: твердые сплавы, минерало–керамика, естественные и искусственные алмазы, а также другие сверхтвердые материалы.

Но, несмотря на появление новых материалов, на рынке режущих инструментов значительный сегмент составляют проверенные временем инструментальные стали. Они не теряют свою актуальность и потому, что сейчас наметилась тенденция к изготовлению составных или модульных фрез, состоящих из корпуса и быстросменяемых пластин. На изготовления корпуса идут достаточно прочные инструментальные стали. А вот уже пластины делают из современных сверхпрочных материалов. Процесс изготовления концевых фрез достаточно сложен. Здесь очень важна конструктивная прочность, то есть общая прочность модульной фрезы, обеспечивающая не только длительную, но и, самое главное, надежную работу при ее эксплуатации. Здесь важная роль принадлежит конструкционным, технологическим, металлургическим и эксплуатационным факторам.

Большим шагом вперед в достижении высоких скоростей резания стало использование быстрорежущих инструментальных сталей. Концевые фрезы, изготовленные из этого материала, могли работать на скоростях, превышающих скорость фрез, сделанных из углеродистой инструментальной стали, в 3-5 раз. Этому способствовала большая износостойкость быстрорежущей стали. Это свойство придают ей карбидообразующие и легирующие химические элементы, которые обозначаются следующим образом:

Концевыми фрезами из быстрорежущей стали различных марок можно обрабатывать заготовки из самых различных материалов, в том числе и особо прочных: коррозионно-стойких сталей, жаропрочных сплавов и других труднообрабатываемых материалов.

Массивные твердосплавные концевые фрезы изготавливаются из металлокерамического прутка. С помощью алмазного шлифовального круга в заготовке вышлифовываются стружечные канавки. Затем формируются режущие кромки. Фрезы для финишной обработки имеют прямую спиральную режущую кромку. А вот концевые фрезы для предварительной обработки имеют, так называемую, распределенную кромку. Радиусные углубления на задней поверхности фрезы, придают режущей кромке зубчатую форму. Это снижает трение задней поверхности инструмента и, как следствие, температуру в зоне обработки. У фрез для обработки глубоких пазов на рабочей части имеется удлинитель, диаметр которого меньше диаметра рабочей части. Это обеспечивает свободный выход стружки из зоны резания. Фрезы с режущими элементами из синтетического алмаза используются в обрабатывающих центрах с ЧПУ при производстве больших партий однотипных серийных изделий.

Читать еще:  Кабель что это значит

Источник: www.et-rus.ru

Материалы, применяемые для изготовления фрез

Материалы, применяемые для изготовления фрез, должны обладать следующими свойствами: высокой твердостью, превышающей твердость обрабатываемого материала, высокой износостойкостью и теплостойкостью, высокой механической прочностью.
Для изготовления режущих инструментов и, в частности, фрез применяют углеродистые легированные инструментальные стали, быстрорежущие инструментальные стали, твердые сплавы, минералокерамику, эльборы, синтетические и естественные алмазы.
Для изготовления режущего инструмента применяют инструментальные углеродистые стали следующих марок: У7, У8, УО, У10, У11, У12, У13 (буква У указывает на то, что сталь углеродистая, а цифры показывают среднее содержание углерода в десятых долях процента). Инструментальные стали повышенного качества, имеющие минимальное количество вредных примесей, отмечают буквой А: У10А, У8А и т. д.
Углеродистая инструментальная сталь обладает низкими режущими свойствами. Режущие инструменты, изготовленные из такой стали, позволяют вести обработку при температуре в зоне резания до 200 — 250°С и при скоростях резания в пределах 10 — 15м/мин.
Легированная инструментальная сталь по химическому составу отличается от углеродистой инструментальной стали лишь наличием одного или нескольких легирующих элементов: хрома, вольфрама, молибдена, ванадия.
Чаще всего для изготовления прорезных, фасонных и концевых фрез малых диаметров применяют следующие марки стали: ХГ, ХВ5, ОХС и ХВГ.
Легированная инструментальная сталь обладает более высокими режущими свойствами, чем углеродистая инструментальная сталь (температура в зоне резания 300 — 350°С, скорости резания 20 — 25 м/мин).
Быстрорежущая инструментальная сталь в отличие от углеродистой и легированной инструментальной стали обладает большим сопротивлением износу и большей теплостойкостью. Она обладает красностойкостью, т. е. не теряет своих свойств при температуре красного каления (550 — 600°С).
Быстрорежущие стали делятся на стали нормальной производительности (Р18, Р12, РО, Р18М, РОМ, Р6М5, Р18Ф2) и стали повышенной производительности (Р18Ф2К5, РОФ2К5, РОФ2К5, РОФ2К10, РОФ5, Р14Ф4, Р6МЗ, Р10Ф5К5 и др ), легированные кобальтом (К), ванадием (Ф) и молибденом (М).
Из быстрорежущих сталей нормальной производительности лучшей является сталь Р18, которая легко обрабатывается шлифованием и малочувствительна к прижогам.
Стали повышенной производительности обладают более высокими красно- стойкостью и режущими свойствами. Быстрорежущая сталь нормальной производительности может работать при скоростях резания до 60 м/мин и выше, а повышенной производительности до 100 м/мин и выше.
Термическая обработка быстрорежущей стали. Закалка применяется для повышения твердости и сопровождается уменьшением вязкости.
Оптимальная температура при закалке быстрорежущей стали Р18 для тонких изделий (5 — 8 мм) — 1260°, для изделий толщиной более 10 — 15 мм — 1280°. Быстрорежущая сталь медленно прогревается, высокий нагрев приводит к обезуглероживанию и образованию трещин, поэтому изделия из быстрорежущей стали медленно нагревают при закалке до температуры 820 — 850°. Окончательный нагрев лучше всего производить в соляных ваннах, так как это позволяет избежать обезуглероживания стали. Выдержка при температуре закалки измеряется долями минуты. Быстрорежущая сталь после закалки обязательно должна быть подвергнута многократному отпуску. Оптимальная температура отпуска для стали Р18 — 580°, а для стали P9 — 560°.
Быстрорежущие стали повышенной производительности требуют тщательного соблюдения режимов термообработки. Отступление от рекомендуемых режимов (особенно при обработке кобальтовых сталей) может привести к понижению твердости и сильному обезуглероживанию).
Твердые сплавы допускают работу со скоростями резания, превышающими в 5 — 10 раз скорости обработки быстрорежущими инструментальными сталями, и не теряют режущих свойств при температуре до 850°С и выше.
Металлокерамические твердые сплавы состоят из карбидов вольфрама, титана или тантала и кобальта, связывающего эти вещества. Различают вольфрамо-кобальтовые металлокерамические сплавы (ВК2, ВКЗ, ВК6, ВК4В, ВК6В, ВК6М, ВК8, ВК10, ВК10М, ВК15М и др.) и титано-вольфрамо-кобальтовые (Т5К10, Т14К8, Т15К6, ТЗОК4, Т60К6 и др.). Цифры после буквы К указывают процентное содержание в сплаве кобальта, после буквы Т — карбидов титана; остальное составляют карбиды вольфрама. Например, сплав Т14К8 состоит из 14% карбида титана, 8% кобальта и 78% карбида вольфрама.
В настоящее время выпускают трех-карбидные твердые сплавы марок Т5К12В, ТТ7К12, ТТ7К5, ТТ10К8Б и др., состоящие из карбидов вольфрама, титана, тантала, кобальта. Эти сплавы характеризуются высокой прочностью. Твердый сплав марки ТТ7К12 допускает работу с 1,5 — 2 раза большими.
подачами на зуб, чем сплав Т5К10. Твердые сплавы выпускаются в виде пластинок стандартных форм и размеров
Вольфрамо-кобальтовые сплавы применяют для обработки хрупких материалов: чугуна, бронзы, закаленной стали, пластмасс, фарфора и т. п. Твердые сплавы титано-вольфрамовой группы предназначены главным образом для обработки сталей. При выборке марок твердого сплава можно руководствоваться данными табл. 24.

В настоящее время фрезы все чаще оснащают пластинками твердого сплава. Выпускаются также цельные твердосплавные фрезы.
Минералокерамические сплавы приготовляют на основе окиси алюминия (А120а) = корунда путем тонкого размола, прессования и спекания. Выпускают их, как и твердые сплавы, в виде пластинок стандартных форм и размеров.
Минералокерамические пластинки марок ЦМ-332 (микролит), ЦВ-13 и ЦВ-18 (термокорунд) обладают большей теплостойкостью и износостойкостью, чем некоторые твердые сплавы. Однако они имеют пониженную по сравнению с твердыми сплавами прочность и повышенную хрупкость. Минеральная керамика находит применение при чистовом и тонком фрезеровании торцовыми фрезами (головками).

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: studopedia.ru

Ссылка на основную публикацию
Adblock
detector