Магнитный сплав железа с никелем

Магнитный сплав железа с никелем

Последняя бука буква «р»

Ответ на вопрос «Сплав железа с никелем «, 5 букв:
инвар

Альтернативные вопросы в кроссвордах для слова инвар

Магнитный сплав для высокоточных приборов

Сплав: железо никель

Сплав для часовых деталей

Ni + Fe (название сплава)

Сплав железа с никелем (применяется для изготовления деталей измерительных приборов)

Магнитный сплав для высокоточ. приборов

Определение слова инвар в словарях

Энциклопедический словарь, 1998 г. Значение слова в словаре Энциклопедический словарь, 1998 г.
ИНВАР (от лат. invariabilis — неизменный) магнитный сплав Fe (основа) с Ni (36%), обладающий малым температурным коэффициентом линейного расширения. Выпускается также суперинвар (64% Fe, 32%Ni, 4% Co) и нержавеющий инвар (54% Co, 37% Fe, 9% Cr). Из инвара.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова. Значение слова в словаре Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.
м. Сплав железа с никелем, практически не изменяющий своего объема при изменении температуры от -80 до +100 градусов Цельсия, применяющийся для изготовления деталей точных измерительных приборов.

Примеры употребления слова инвар в литературе.

Да, я тоже слыхала,— кивнула повариха — инвар был властелином Дхаранга и всей страны, и Лувгалл как ответственный чиновник казначейства иной раз отчитывался непосредственно правителю, так что в доме Коддоров хорошо знали обо всех делах двора.

Ну, представь, чью сторону примет инвар, если придется выбирать между каким-то чиновником и главой Академии?

Лувгалла вновь пригласил к себе инвар, и на сей раз их встреча была тайной.

Они говорили еще, и инвар настоял, чтобы Лувгалл оставался в своей должности.

Итак, инвар решил воспользоваться им как дубинкой, и пока не собирался отказываться от его услуг.

Источник: библиотека Максима Мошкова

Источник: xn--b1algemdcsb.xn--p1ai

Железоникелевые сплавы

Чистый никель, хотя и имеет достаточную механическую прочность, в технике используется редко, из-за своей дефицитности сложностей при пластической и механической обработке. Гораздо большее практическое применение находят сплавы никеля с железом.

Классификация железоникелевых сплавов

Может быть выполнена по следующим показателям:

  1. По жаропрочности. Преобладающее количество рассматриваемых сплавов обладает повышенной механической прочностью и стойкостью при высоких температурах и внешних нагрузках.
  2. По магнитным характеристикам. Некоторые сплавы никеля с железом обладают увеличенными, против обычного, значениями своей магнитной проницаемости.
  3. По способности сохранять постоянными свои габаритные характеристики и упругость, в результате чего коэффициент расширения сплавов имеет стабильные значения.
  4. По антикоррозионной стойкости, что используется в деталях, длительно работающих в агрессивных средах.

Кроме того, отдельно следует упомянуть, что никелем легируются некоторые марки чугунов, что повышает стойкость деталей, изготовленных из такого материала (так, валки крупных прокатных станов выполняются именно из чугуна, содержащего до 3…4% никеля).

В дальнейшем, при сравнительном анализе эксплуатационных характеристик сплавов железа и никеля, в расчёт будут приниматься только такие сплавы, в которых процент никеля не будет менее 15…20.

Значительное количество марок отечественных железоникелевых сплавов производится по отраслевым ТУ. Однако в ГОСТ 5732 наряду с жаропрочными и жаростойкими сталями в отдельную группу выведены также и сплавы железа с никелем. При этом суммарное процентное содержание этих элементов должно быть не менее 65%, а соотношение никеля к железу установлено в рамках 2:3.

Особенности состава

Зависимость характеристик механических свойств железоникелевого сплава ХН77ТЮР от температуры

В результате выплавки структура сплавов представляет собой твёрдый раствор y-железа в никелевой основе. В результате такого растворения температура стабильности микроструктуры повышается на 150…200 0 С. При этом до 500 0 С диффузия никеля в железо происходит весьма медленно, и активизируется лишь при достижении температур 700…800 0 С.

Основной структурной составляющей является интерметаллидное соединение FeNi3, в котором содержание никеля, в зависимости от температуры, составляет 55…75%. Это предопределяет температурный диапазон, в котором производится термическая обработка таких сплавов. Наибольшее процентное содержание никеля в стабильно существующих сплавах не превышает 60…65%. Эффект введения никеля в основную структуру сплава обусловлен тем, что железо резко увеличивает термическую прочность.

Однако наличие одного железа не особо способствует повышению эксплуатационных характеристик железоникелевых сплавов, особенно тех, для которых требуется длительная стойкость при повышенных температурах. Поэтому в состав структуры железоникелевых сплавов вводят также хром, вольфрам, молибден, марганец и — в незначительных количествах — кремний.

Таким образом, основными способами получения требуемой структуры железоникелевых сплавов считается механизм дисперсионного твердения, с последующей термической обработкой. Она производится для того, чтобы несколько повысить размеры зёрен в структуре, и снять внутренние напряжения, неизбежные при замещении в кристаллической решётке некоторых атомов железа атомами никеля.

Свойства и характеристики жаропрочных сплавов

Рассмотрим их на примере наиболее распространённых марок.

Сплав ЭП747 (или ХН45Ю) применяется в металлургии для изготовления роликов рольгангов, по которым перемещаются слитки. Кроме железа и никеля (содержание никеля 44…46%), содержит также хром и алюминий. Сплав выплавляется в электропечах, после чего проходит горячую пластическую деформацию, температурный интервал которой находится в диапазоне 1280…850 0 С (первая температура – начало деформирования, вторая – окончание). Сплав хорошо поддаётся термической обработке и электродуговой сварке. Сортамент – листы толщиной до 2 мм и прутки.

Физико-механические показатели сплава ХН45Ю составляют:

  • Механическая прочность – от 600 МПа при комнатных температурах, до 150 МПа при температуре 800 0 С;
  • Жаростойкость на спокойном воздухе – до 1300…1350 0 С;
  • Интенсивность окисления, г/м 2 ∙ч — не более 170;
  • Коэффициент теплопроводности при температурах эксплуатации, Вт/м 2 ∙К – 17,5…24,5;
  • Модуль Юнга при температурах эксплуатации, ГПа – 12,5…17,5.

Сплав ЭИ602 (или ХН75МБТЮ) используется для внутренней облицовки камер сгорания металлургических и термических печей при температурах, не превышающих 900…950 0 С. Кроме железа и никеля, содержит также хром, титан, молибден, алюминий и ниобий. Ввиду более сложного состава, который включает в себя весьма разнородные химические элементы, после выплавки в электропечах подвергается горячей деформации в гораздо более узком диапазоне температур: 1180…1280 0 С. В отличие от предыдущего сплава, ХН75МБТЮ более пластичен, в частности, допускает глубокую вытяжку. Поэтому из него можно изготавливать полые детали машин, которые будут далее эксплуатироваться при высоких температурах. Хорошо сваривается всеми видами электросварки.

Интенсивное образование окалины на поверхности данного сплава начинается лишь при температурах от 1250…1280 0 С. Сплав поставляется только в виде листов — горячей, либо холодной прокатки.

Физико-механические показатели сплава ХН75МБТЮ составляют:

  • Механическая прочность – от 860 МПа при комнатных температурах, до 177 МПа при температуре 900 0 С;
  • Длительная прочность и термическая выносливость, МПа, не менее — 190;
  • Коэффициент теплопроводности при температурах эксплуатации, Вт/м 2 ∙К – 20,2…19,3;
  • Модуль Юнга при температурах эксплуатации, ГПа – 19,0…10,2.

Сплав ЭИ868 (или ХН60ВТ) отличается еще более высокой жаростойкостью и стойкостью от воздействия агрессивных сред. Поэтому он используется для изготовления лопаток газовых турбин, работающих при температурах 950…1000 0 С. В химическом составе сплава в больших количествах имеют вольфрам и хром, присутствует также титан. Сортамент сплава – листы, пруток и проволока. Сплав обладает характеристиками обрабатываемости и свариваемости, схожими со сплавом ХН75МБТЮ, однако выделяется более высокими показателями жаростойкости, самыми высокими из жаропрочных железоникелевых сплавов: интенсивность окисления при температурах эксплуатации 1000 0 С не превышает 0,6…0,8 г/м 2 ∙ч. Структура и прочность сплава не изменяются даже после 30…35 циклов нагрева и охлаждения.

Остальные физико-механические показатели сплава ЭИ868 составляют:

  • Механическая прочность – от 800 МПа при комнатных температурах, до 43 МПа при температуре 1000 0 С;
  • Длительная прочность и термическая выносливость, МПа, не менее — 210;
  • Коэффициент теплопроводности при температурах эксплуатации, Вт/м 2 ∙К – 28…24;
  • Модуль Юнга при температурах эксплуатации, ГПа – 19,0…2,0.
Читать еще:  Диаметр труб в дюймах и миллиметрах таблица

Другие железоникелевые сплавы с особыми свойствами

Во многих отраслях техники требуются сплавы, с постоянными показателями упругости. Такие материалы применяются в часовой промышленности, для производства высокоточных пружин измерительной техники, струн музыкальных инструментов, камертонов и т.п.

Никелевый сплав алюмель, используют для изготовления термопар

Наибольшее практическое применение находит сплав элинвар, в котором присутствует 59% железа, 36% никеля, а остальное составляют хром, молибден и вольфрам. Повышенная упругость элинвара имеет магнитную причину – силы межатомной связи в кристаллической решётке материала при подходе к точке Кюри резко ослабляются, благодаря чему доменная структура сплава при деформировании обратимо изменяется. При этом константы упругости элинвара практически не зависят от температуры.

Широкую группу железоникелевых сплавов образуют пермаллои – сплавы, для которых характерна высокая магнитная проницаемость в слабых полях. По сочетанию своих электрических и магнитных характеристик пермаллои могут быть высоко- и низконикелевыми. Первые отличаются значительно более низким удельным электросопротивлением.

Пермаллои дополнительно легируются молибденом, хромом, кремнием. Плавку их ведут в вакуумной или нейтральной среде. Высокая магнитная проницаемость обеспечивается последующей термообработкой, которая включает в себя высокотемпературный отжиг.

Пермаллои довольно чувствительны к резким механическим нагрузкам. Для достижения стабильных механических показателей перед термообработкой изделия тщательно обезжириваются.

Чаще других применяются следующие марки пермаллоев:

  • 79НМ – для деталей, требующих высокой намагниченности;
  • 50ХНС – для оптимального сочетания показателей электропроводности и магнитной проницаемости;
  • 50Н – для максимальных значений магнитной индукции;
  • 50НП – для обеспечения необходимой анизотропии магнитных показателей.

Проволоку из железоникелевых сплавов применяют в технологических процессах наплавки и поверхностного напыления. При этом обеспечиваются повышенные эксплуатационные показатели для основного материала детали. Наибольшее распространение получила проволока марки СВ-10Х16Н25АМ6.

Из других марок железоникелевых сплавов стоит отметить инвар. Этот материал отличается чрезвычайно высокой стабильностью своих размеров, а потому используется при изготовлении высокоточных инструментов, эталонов длины, объёма и иных физических характеристик.

Источник: zewerok.ru

Железоникелевые сплавы с высокой магнитной проницаемостью

Сплавы железа с никелем, называемые также пермаллоями, обладают при определенном соотношении компонентов высокими магнитными свойствами. Для сплавов этого состава характерны наивысшие значения магнитной проницаемости, минимальные зна­чения коэрцитивной силы. Наибольшими значениями начальной и максимальной магнит­ных проницаемостей обладают сплавы, содержащие 70—80% Ni (высоконикелевые сплавы), второй, меньший, максимум наблюдается, если сплав содержит 40—50% Ni (низконикелевые сплавы). По сравнению с электротехническими сталями магнитная проницаемость железоникелевых сплавов в несколько сотен раз выше как в постоянных, так и в переменных магнитных полях (см. рис. 19.8). Индукция насыщения высоконикелевых сплавов примерно в 2 раза ниже, чем у электротехнической стали, и в 1,5 раза ниже, чем у низконикелевых сплавов. Из этого следует что, например, для магнитопроводов мощных силовых трансформаторов и мощных магнитопроводов других назначений не следует использовать высоконикелевые сплавы.

Удельное электрическое сопротивление низконикелевых сплавов приблизительно 2 раз выше, чем высоконикелевых. Это позволяет использовать низконикелевые сплавы на более высоких частотах.

Большим недостатком всех железоникелевых сплавов является их высо­кая чувствительность к механическим воздействиям, причем в наибольшей степени по этой причине снижаются начальная и максимальная проницае­мости и возрастает коэрцитивная сила и потери при перемагничивании.

Все марки железоникелевых сплавов разделены на 4 группы:

1. Нелегированные низконикелевые сплавы 45Р и 50Н с содер­жанием 45% и 50% никеля (Н) соответственно.

2. Низконикелевый сплав 50НХС, легированный хромом (X) и кремнием (С).

3. Сплавы, обладающие магнитной текстурой и прямоугольной петлей гистерезиса, 50НП, 65НП, 34НКМП с содержанием никеля 50, 65 и 34% соответственно, но сплав 34НКМП легирован кобаль­том (К) и молибденом (М). Буква П означает, что в результате особой технологии изготовления и термической обработки сплав мо­жет обладать прямоугольной петлей гистерезиса

4. Высоконикелевые сплавы 79НМ, 80НХС, 76НХД, легирован­ные соответственно молибденом, хромом и кремнием, хромом и медью (Д).

Принципиальная технологическая схема изготовления магнитопроводов из железоникелевых сплавов подобна указанной ранее для электротехнических сталей. Все железоникелевые сплавы поставляют только в неотожжен- ном виде. Режимы термообработки сплавов, протекающей при тем­пературе 1000—1200° С, регламентированы ГОСТ 10160—75. Толь­ко при их строгом соблюдении могут быть получены гарантирован­ные магнитные свойства.

Области применения основных марок сплавов в приборострое­нии:

сплав 50Н с более высоким значением индукции насыщения, чем у остальных сплавов этой группы; применяют его для изготов­ления ленточных, витых и штампованных магнитопроводов мало­габаритных силовых трансформаторов и трансформаторов звуковых частот, дросселей, реле и деталей магнитных цепей, работающих в широком диапазоне частот при повышенных магнитных индукциях преимущественно без подмагничивания;

сплав 50НХС, обладающий повышенным удельным сопротив­лением; может быть использован для изготовления магнитопрово­дов аппаратуры связи звуковых и высоких частот, работающих без подмагничивания или с небольшим подмагничиванием, а также для изготовления импульсных трансформаторов;

сплавы 79НМ, 80HXG, 76НХД, имеющие высокую магнит­ную проницаемость в слабых полях; применяют их для изготовле­ния магнитопроводов малогабаритных трансформаторов, дросселей, реле магнитных экранов, а при толщине ленты 20 мкм — для изго­товления магнитопроводов магнитных усилителей, элементов вы­числительных устройств, бесконтактных реле и т. д.

Сплав 76НХД обладает повышенной температурной стабиль­ностью в интервале температур —60÷ + 60° С.

Магнитная проницаемость рассматриваемых ферритов составля­ет µн=20—20 ООО и µmax= 45—35 000. Ферриты, у которых µн= 400—20 000 в слабых полях во многих случаях эффективно заме­няют листовые железоникелевые сплавы и электротехническую сталь. Однако в средних и сильных полях низкой частоты исполь­зование магнитомягких ферритов нецелесообразно, поскольку они имеют в 2—3,5 раза более низкую индукцию насыщения, чем ме­таллические магнитные материалы.

Для ферритов характерна сильная зависимость проницаемости: µН от температуры. Начальная проницаемость ферритов повышает­ся с ростом температуры, а при подходе к температуре Кюри резка снижается в связи с потерей ферримагнитных свойств. Значения температуры Кюри, зависящие от состава и структуры феррита и определяющие рабочий температурный диапазон приме­нения.

Практический интерес представляет вопрос о стабильности маг­нитной проницаемости во времени, которую оценивают по формуле:

где Кµ — коэффициент стабильности, показывающий изменение па­раметра в течение года, %; µτ1, µτ2 — значения начальной проница­емости в моменты времени τ1 τ2.

Рис. 21.2. Эквивалентная схема и векторная диа­грамма катушки с маг­нитным «сердечником»

Магнитные потери, возникающие в ферритовых сердечниках при перемагничивании, часто оценивают величиной тангенса угла потерь. Действительно тороидальную катушку с ферритовым сер­дечником можно представить в виде экви-валентной схемы, изобра­женной на рис. 21.2 (сопротивле-нием и емкостью обмотки пренебре­гаем). Сопротивление R эквивалентно всем видам потерь мощности в феррите. Из векторной диаграммы получим tgδm=R/(ωL)

Тангенс угла магнитных потерь в общем случае имеет составляющие потерь на гис­терезис, на вихревые токи и на магнитную вязкость. В слабых полях потери на гисте­резис малы, потери на вихревые токи в фер­ритах ничтожны вследствие их высокого удельного соп-ротивления. Таким образом, для ферритов в высокочастотном поле ос­новным видом являются потери на магнит­ную вязкость материала.

Удельные потери при перемагничивании тороидального ферритового сер-дечника в слабых полях измеряют в Вт/м 3

Отсюда следует, что основное влияние на потери оказывают ве­личины индукции материала и тангенса угла потерь, приведенного к величине начальной магнитной проницаемости.

Среди низкочастотных ферритов наиболее широко используют ферриты марок 2000НМ, 600НН, 400НН, идущие на изготовление строчных трансформаторов, раструбов отклоняющих систем телевизоров, сердечников магнитных антенн радиовещатель­ных приемников и т. д.

Читать еще:  Арматурная сталь гост 5781 82 характеристики

Существенными преимуществами марганец-цинковых ферритов перед никель-цинковыми являются: в несколько раз меньше потери на гистерезис, более высокая индукция, значительно большая тем­пература Кюри и меньшее значение температурного коэффициен­та а п..

К недостаткам марганец-цинковых ферритов относится меньшее значение fкр. При жестких требованиях к величине нелинейных ис­кажений марганец-цинковые ферриты лучше никель-цинковых, но последние имеют преимущества при работе в устройствах с подмагничиванием. При повышенных требованиях к термостабильности в широком интервале температур рекомендуется использовать мар­ганец-цинковые ферриты 1500НМЗ, 1000НМЗ, 700НМ1 и 700НМ, которые могут обеспечить и высокую добротность изделий. При по­вышенных требованиях к временной стабильности Кµ рекомендуется использовать марганец-цинковые ферриты 2000НМЗ и 700НМ1 в то время как для других марок этого феррита Кµ= = 5-15%.

Высокочастотные никель-цинковые ферриты предназначены для использования в слабых полях при частотах до 100 МГц, имеют малые потери и низкое значение µH в широком тем­пературном интервале. Временная стабильность µH этой группы ферритов высока и составляет десятые доли процента в год.

В зависимости от величины магнитной проницаемости никель- цинковые ферриты по назначению подразделяют на четыре группы:

Группа I — материалы с высоким значением µmax ≥lOOO. Для них характерна высокая проницаемость, но низкая граничная час­тота. Невысокая температура Кюри определяет узкий диапазон ра­бочих температур. Материалы этой группы предназначены для из­готовления сердечников, используемых при частотах до нескольких сот килогерц.

Группа II — материалы со средним значением µmax = 200—600, повышенным значением температуры Кюри и меньшими потерями, чем у материалов первой группы. Материалы этой группы можно применять на частотах до нескольких мегагерц.

Группа III — материалы с низким значением µmax = 100—150, имеющие температуру Кюри до 400° С. Они предназначены для из­готовления сердечников, работающих в диапазоне нескольких де­сятков мегагерц.

Группа IV — материалы со сверхнизкими значениями µmax = 10—50, имеющие незначительные потери и высокую термоста­бильность. Граничные частоты — до 200 МГц. Ферриты этой груп­пы применяют для изготовления сер-дечников высокочастотных ка­тушек, индуктивных катушек фильтров.

На основе ферритов реализован перспективный тип элементов — многофункциональные магнитные радиокомпоненты, осуществля­ющие одновременно трансформацию, стабилизацию, модуляцию и другие виды преобразования электрического сигнала.

-Альсифер—это тройной сплав алюминия (аль-), кремния (-си) и же­леза (-фер). Для магнитодиэлектриков применяют сплавы с содер­жанием кремния 9—11 % и алюминия 7,5%. Требования к точности поддержания состава спла­ва невысоки, так как свойства магнитодиэлектрика мало зависят от свойств исходного магнитного материала. Они определяются в основном размерами, формой и взаимным расположением частиц этого материала. Альсифер дешевый, недефицитный материал. Из­меняя содержание кремния и алюминия, можно регулировать вели­чину температурного коэффициента проницаемости ТКµ и добить­ся практически нулевых его значений. Все это обеспечило альсиферу широкое применение при производстве магнитодиэлектриков.

Пермаллой — сплав железа и никеля (45—82 % Ni). Может быть дополнительно легирован несколькими другими компонентами. Сплав обладает высокой магнитной проницаемостью, малой коэрцитивной силой, почти нулевой магнитострикцией и значительным магниторезистивным эффектом. Благодаря низкой магнитострикции сплав применяется в прецизионных магнито-механических устройствах и других устройствах, где требуется стабильность размеров в меняющемся магнитном поле. Электрическое сопротивление пермаллоя меняется обычно в пределе 5 % в зависимости от силы и направления действующего магнитного поля. Пермаллой используется для изготовления трансформаторных пластинок, для элементов магнитных записывающих головок. Первоначально, пермаллой использовался для уменьшения искажения сигнала в телекоммуникационных кабелях как компенсатор их распределённой ёмкости. Магниторезистивные свойства пермаллоя используют в датчиках магнитного поля, в частности в микросхемах, как например в двухосном магнитометре HMC1002. Прокат пермаллоя применяется для экранирования от магнитного поля — помещений для МРТ, электронных микроскопов и некоторых других особо чувствительных приборов. Из пермалоя изготавливают защитные кожухи для микросшем, и катушек — особо чувствительных к магнитному полю.

Дата добавления: 2015-12-29 ; просмотров: 2932 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник: helpiks.org

Решение научно-технических задач часто связано с поиском материалов, обладающих свойствами, которых нет у природных материалов. К таким прогрессивным разработкам можно отнести прецизионные сплавы, в частности, инвар.

Под прецизионными сплавами понимают такие металлические сплавы, которые придают выбранному основному металлу дополнительные, заранее заданные свойства. Иногда удаётся получить уникальные физические, химические или механические свойства. Итоговый результат определяется процентным соотношением каждого из металлов в сплаве. Для получения подобных сплавов используют следующие металлы: железо, никель, медь, кобальт и многие другие.

Очень интересную группу составляют прецизионные сплавы, обладающие так называемыми аномальными свойствами. Например, у них практически не изменяются, или изменяются в небольших пределах физические свойства при изменении внешних воздействий:

  • температуры внешней среды;
  • величины и свойств магнитного и электрического полей (амплитуды, частоты, фазы и поляризации);
  • увеличение или ослабление механических нагрузок;
  • воздействия реактивных сред.

Наиболее применяемых подобных сплавов насчитывается около двенадцати. Самые распространённые: инвар (магнитный сплав железа с никелем), элинвар, константан, перминвар, манганин.

Инвар получил своё название от латинского слова «неизменный». Он создан достаточно давно — ещё в 1896 году швейцарским химиком и металлургом Гийомом. Однако свойства этого сплава были оценены по достоинству гораздо позже. Сам автор за это открытие получил Нобелевскую премию по физике. Особое внимание обратили на физико-химические свойства инвара разработчики точной измерительной техники.

Физико-химические свойства инвара

Инвар — это сплав железа с никелем. Процентные соотношения этих металлов распределяются следующим образом: железо – 64%. Никель -36%. Сам сплав с латинским названием «Invar» как торговая марка зарегистрирован компанией ArcelorMital. Тем не менее, она не обладает всеми правами на изготовление инвара. В России этот сплав изготавливается по ГОСТ со своим наименованием. Наиболее распространённым и часто используемым, считается инвар 36Н.

Внешний вид сплава

К физически свойствам относятся:

  • Коэффициент теплового расширения. Он достаточно низкий при очень широком диапазоне температуры (от -80°C до +100°C).
  • Температура плавления. Она составляет 1430°C.
  • Предел механической прочности равен 49 кгс/мм 2 .
  • Плотность стандартного сплава составляет 8130 кг/м³,

Эти уникальные физические характеристики объясняются следующими химическими свойствами:

  • Имеет характерно выраженную однофазную структуру.
  • Маленький коэффициент теплового расширения объясняется тем, что при нагреве общее тепловое расширение компенсируется магнитострикционным снижением объёмного показателя.

Для улучшения характеристик его подвергают различным видам механической обработки. Чтобы повысить прочность проводят холодную пластическую деформацию, а затем термообработку при низкой температуре. Повышение стойкости к коррозии достигается специальной полировкой. Высокой устойчивости к воздействию агрессивной внешней среды добиваются нанесением специальных защитных покрытий.

Часто на практике применяются две разновидности инвара: суперинвар с пониженным коэффициентом линейного расширения и нержавеющий инвар, в состав которого входит железо (почти 37%), кобальт (не менее 54%), хром (около 9%).

Применение инвара

Данный сплав железа с никелем изготавливается в форме проволоки или тонкой плоской ленты. Иногда по требованию заказчика ему придают другую форму. Это могут быть: небольшие по размеру листы, прутки или лента. Улучшение свойств обеспечивается за счёт создания особых технологических условий: плавки, последующей термической обработки, специфической деформации и обработки поверхности.

Детали из инвара

Инвар используется для производства некоторых деталей приборов, измерительной и экспериментальной аппаратуры, которые не должны менять свои линейные размеры в зависимости от изменений окружающей температуры. Из этого сплава изготавливают различные датчики, преобразователи энергии, одну из составляющих биметаллических элементов. Благодаря своим характеристикам он использовался для производства эталонов длины и массы.

Инвар применяется также в бытовой технике: телевизорах, радиоприёмниках, аудио и видеомагнитофонах, некоторых моделях высокоточных маятниковых часах.

Небольшие размеры деталей, сложность и высокая стоимость производства требует аккуратного обращения с аппаратурой, имеющей в своём составе прецизионные сплавы, такие как инвар.

Читать еще:  Кто такой плотник для детей

Разновидности инвара применяются при производстве переходов металл-стекло, мембранных ёмкостей для перевозки сжиженного газа, в микроэлектронике в качестве подложек чипов, корпусов лазерных установок, волноводов. В последнее время разработана надёжная методика сварки. Это позволило значительно расширить область его применения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: stankiexpert.ru

Сплав железа с никелем. Магнитный сплав железа с никелем

Важную роль в жизни каждого занимает металлургическая промышленность, потому что ежедневно приходится сталкиваться с различными изделиями из металла. А сделаны они из всевозможных сплавов, которые получены благодаря выплавке. При производстве этих материалов используют как минимум два металла, а для улучшения свойств — специальные присадки. В этой статье будет рассмотрено несколько сплавов железа с никелем, их свойства и применение.

О свойствах железа

Чистое железо — серебристо-серого цвета, обладает пластичностью и ковкостью. Самородные слитки, встречающиеся в природе, имеют ярко выраженный металлический блеск и значительную твердость. На высоте и электропроводность материала, он с помощью свободных электронов легко передает ток. Металл обладает средней тугоплавкостью, размягчается при температуре +1539 градусов по Цельсию и теряет ферромагнитные свойства. Это химически активный элемент. При нормальной температуре легко вступает в реакцию, а при нагревании эти свойства усиливаются. На воздухе покрывается пленкой оксида, которая мешает продолжению реакции. При попадании во влажную среду появляется ржавчина, которая уже не препятствует коррозии. Но, несмотря на это, железо и его сплавы находят широкое применение.

Немного истории

Инвар – это сплав железа с никелем, в состав которого входит 36 % легирующей добавки. Впервые он был открыт во Франции в 1896 году физиком Шарлем Гийомом. В это время он вел работы по поиску недорогого металла для эталонов мер массы и длины, которые изготовляли из очень дорогостоящего платиноиридиевого сплава. Благодаря этому открытию ученый в 1920 году получил Нобелевскую премию в области физики.

Слово «инвар» в переводе с латинского означает неизменный. Это значит, что у сплава железа с никелем коэффициент теплового расширения остается постоянным при широком диапазоне изменения температур — от -80 до 100 градусов по Цельсию. Этот сплав имеет и несколько других названий: нилвар, вакодил, нило-аллой, радиометалл. Invar является торговой маркой компании Imphy Alloys Inc., которая принадлежит сталелитейному концерну Arcelor Mittal.

Сплав железа с никелем

Для улучшения свойств железа, используя различные добавки, получают сплавы. Ученые считали, что получить железоникелевый сплав, учитывая термодинамические свойства металлов, не составит никакого труда. Но на практике они столкнулись с проблемами. При взаимодействии металлов, во время получения сплава железа с никелем, в результате побочного окислительного процесса железо из двухвалентного состояния переходит в трехвалентное.

В результате снижается выход сплава и ухудшаются определенные физические свойства. Для решения этой проблемы в электролит добавляют амины и органические кислоты, которые образуют с трехвалентным железом соединения, обладающие малой растворимостью. В связи с этим эластичность осадка становится лучше, а для его равномерного распределения электролиты перемешивают. Полученный сплав железа с никелем называется инвар.

Применение сплава инвар

Незначительный температурный коэффициент расширения позволяет использовать его для производства:

  • деталей контрольно-измерительных приборов;
  • лент и проволоки для геодезических работ;
  • несущих конструкций лазера;
  • деталей часовых механизмов, маятников хронометров;
  • проката: горячекатаного прутка и листа, холоднокатаной ленты, бесшовных труб, кованых прутков.

Для увеличения прочности производят холодную пластическую деформацию сплава железа с никелем, а затем делают низкотемпературную термообработку. Для большей стойкости к коррозии при обычных атмосферных условиях его поверхность полируют и наносят защитный слой, если изделие предназначается для использования в агрессивных средах. Антикоррозийные свойства инвара также повысятся при добавлении в его состав около 12 % хрома, при этом он сохраняет постоянную упругость при нагревании до 100 градусов.

Магнитные сплавы

Эти сплавы находят широкое применение в электротехнике. Из них изготовляют постоянные магниты, сердечники трансформаторов, электроизмерительные приборы, электромагниты. Людям давно известно, что железо обладает магнитными свойствами и в результате этого оно находит множество применений.

Много позже было обнаружено, что такое же свойство присуще никелю и некоторым другим металлам. Изделия, изготовленные из магнитного сплава железа с никелем, также обладают способностью сохранять собственное магнитное поле, когда внешнее уже отсутствует. Причем это личное поле снова способно воздействовать на другие магнитные тела.

Никель, кобальт и их сплавы

Кобальт и никель являются элементами подгруппы железа. Все три элемента имеют схожие свойства, но есть и существенные различия. Оба металла обладают большей плотностью, чем железо, и значительно тверже и прочнее его. Они менее активны в химическом плане, отличаются коррозийной устойчивостью. Кроме этого, металлы ценят за большую стойкость по отношению к газовой коррозии.

Недостатками кобальта и никеля является их высокая токсичность и значительная стоимость относительно железа. Свое применение они находят для антикоррозийного наружного покрытия изделий из углеродистых сталей и железа путем электрохимических реакций. А также они применяются для изготовления узлов и деталей, требующих усиленной прочности и твердости. Следует отметить особое значение сплавов железа, никеля и кобальта, которые носят названия коинвар, инвар, супермаллой, пермаллой и маллой. Основное их достоинство заключается в высоких магнитных свойствах. Эти сплавы используют для производства магнитопроводов различных электромагнитных устройств.

Сплав ковар

Смесь состоит из металлов, обладающих отличными механическими свойствами. Их легко обрабатывать, они без труда подвергаются прокатке, протяжке, ковке и штамповке. А сплав кобальта, никеля и железа иначе называется ковар. Удачно подобранное сочетание химических элементов обеспечивает материалу отличные характеристики. Данный сплав имеет хорошую теплопроводность, высокий коэффициент удельного электрического сопротивления и близкие к нулю показатели линейного расширения в большом интервале температур. Единственным недостатком является низкая коррозийная стойкость в сырой среде, поэтому часто используют защитные покрытия из серебра. Ковар широко применяется в промышленности для производства:

  • труб, лент и проволоки;
  • конденсаторов;
  • корпусов оборудования в приборостроении;
  • деталей в радиоэлектронике;
  • корпусов в электровакуумной отрасли.

Содержание в сплаве дорогого кобальта и никеля увеличивает стоимость материала, но хорошие характеристики и продолжительная эксплуатация покрывают первоначальные вложения.

Сплавы ални

Ални – это групповое название магнитных сплавов «железо-никель-алюминий». При увеличении концентрации алюминия и никеля в определенных пределах остаточная индукция уменьшается, а коэрцитивная сила возрастает. Чаще всего применяются сплавы, в которых алюминия от 11 до 18 %, а никеля — 20–34 %. Основными свойствами таких сплавов является электропроводность, теплопроводность и пластичность. Все они характеризуются хорошим свариванием. Для использования сплавов при изготовлении магнитов их легируют кобальтом и медью. В этом случае материал приобретает твердость и хрупкость и имеет крупнозернистую структуру. Сплавы ални применяют как конструкционный материал для деталей газотурбинных и реактивных двигателей, работающих под воздействием высоких температур более 1000 градусов Цельсия продолжительное время, сохраняя металл без повреждений.

Заключение

Все металлы, интенсивно используемые в современной промышленности, являются сплавами. Например, практически все железо, которое получают в мире, используется для производства чугунов и сталей. Объяснить это можно тем, что сплавы характеризуются лучшими свойствами, чем те металлы, из которых их получают. Следует отметить, что выпускаемые промышленностью сплавы имеют общие для них свойства: прочность, твердость, упругость и пластичность. А железоникелевые еще обладают и магнитными свойствами, которые при производстве усиливаются с помощью дополнительного легирования.

Источник: monateka.com

Ссылка на основную публикацию
Adblock
detector