Lm393p описание на русском принцип работы

Lm393p описание на русском принцип работы

Микросхема LM393 имеет в своем корпусе два независимых компаратора напряжения. Компаратор LM393 может работать, как от однополярного источника питания в широком диапазоне напряжений, так и от двухполярного источника. При использовании двухполярного — разница между потенциалами должна составлять от 2 В до 36 В.

Ток потребления компаратора не зависит от напряжения питания. Необходимо обратить внимание, что данный компаратор имеет выход с открытым коллектором.

Ключевая особенность LM393

  • Широкий диапазон напряжения питания: 2…36 В или ±1…±18 В
  • Очень низкий ток потребления (0,45 мА)
  • Низкий входной ток смещения: 20 нА
  • Низкий входной ток смещения: ± 3 нА
  • Низкое входное напряжение смещения: ± 1 мВ тип
  • Низкое выходное напряжение насыщения: 80 мВ
  • TTL, DTL, ECL, MOS, CMOS совместимые выходы
  • Компаратор LM393 доступен в корпусе: DFN8 2х2, MiniSO8, TSSOP8 и SO8

Технические характеристики LM393

Ниже приведены основные электрические характеристики и абсолютные максимальные значения эксплуатации LM393:

Принципиальная схема LM393

Назначение выводов (распиновка)

Аналог LM393

Для замены можно использовать следующие зарубежные и отечественные аналоги LM393:

зарубежный аналог

  • AN1393
  • AN6916
  • AN6914
  • GL393
  • IR9393
  • NJM2903D
  • TA75393AP
  • UPC393C
  • UA393

отечественный аналог

  • 1040СА1
  • КР1040СА1
  • 1401CA3

Принцип работы LM393

Чтобы понять как же работает данный компаратор, рассмотрим простую схему сумеречного автомата.

Глядя на схему мы видим, что оба входа компаратора подключены к делителям напряжения. Первый делитель напряжения, подключенный к инвертирующему входу (2), состоит из постоянного резистора и фоторезистора.

Как известно сопротивление неосвещенного фоторезистора имеет очень большое сопротивление (более 1МОм), и малое при освещении. Поэтому в ночное время суток, согласно логике работы делителя напряжения, напряжение на входе (2) компаратора будет выше, чем в дневное время суток.

Чтобы включать и выключать свет (в нашем случае светодиод), в зависимости от степени освещенности фоторезистора, нам необходимо установить порог переключения. Для этого служит неинвертирующий вход (3) на который необходимо подать опорное (неизменяемое) напряжение. Это опорное напряжение мы возьмем с переменного резистора R3, который выполняет роль делителя напряжения.

Теперь компаратор будет сравнивать два уровня напряжения (на выводах 2 и 3). Если напряжение на входе 2 будет больше чем на входе 3, то светодиод загорится. Как только напряжение на входе 2 опустится (при освещении фоторезистора) ниже уровня напряжения на входе 3, светодиод погаснет.

Скачать datasheet LM393 в формате pdf (595,7 Kb, скачано: 6 264)

Источник: www.joyta.ru

50 шт. LM393 DIP Cдвоенный компаратор. US $2.00 http://ali.pub/35bvw3

50 шт. LM393 DIP Cдвоенный компаратор. US $2.00

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Схема эквивалента компаратора напряжения с однополярным источником питания

Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.

Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Описание работы компаратора

Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы. В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания. В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.

Читать еще:  Чем отличается плашка от клуппа

Сигнал на выходе:

  1. Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
  2. Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Источник: alielectronics.net

Инфракрасный датчик препятствия на компараторе LM393

В данном обзоре мы рассмотрим и протестируем модуль инфракрасного датчика препятствия с обозначением MH-B. Модуль построен на сдвоенном компараторе LM393.

В Грузию товар был доставлен бесплатно компанией «4PX Singapore Post OM Pro» в стандартном пакете:

Плата модуля была герметично запечатана в антистатический пакет и обвернута полиэтиленом с пупырышками:

С одной стороны платы имеются штырьки для подачи питания и снятия сигнала, а с противоположной стороны параллельно друг другу установлены инфракрасный светодиод и фотодиод, которые нужно направлять в сторону препятствия для определения его наличия:

Все контакты подписаны и будет очень легко подключиться к модулю:

  • На VCC подаётся напряжение питания;
  • Вывод GND — общий;
  • С вывода OUT снимается сигнал.

С другой стороны платы написано +OUT, но это не совсем так, и об этом мы поговорим позже:

Кроме микросхемы и светодиода с фотодиодом из радиоэлементов на модуле имеются:

  • светодиод индикации питания;
  • светодиод индикации сигнала;
  • два гасящих резистора для светодиодов на 1 кОм;
  • гасящий резистор инфракрасного светодиода на 100 Ом
  • два резистора смещения по 10 кОм;
  • подстроечный резистор на 10 кОм
  • два шунтирующих конденсатора по 0,1 мкФ;

Как уже говорилось модуль основан на сдвоенном компараторе LM393. Коротко рассмотрим документацию на эту микросхему:

Серия LM393 представляет собой двойные независимые прецизионные компараторы напряжения, способные работать с одиночным или раздельным питанием. Эти устройства спроектированы таким образом, чтобы обеспечить общий режим от одного до другого с одним режимом питания. Спецификации смещения входного напряжения до 2,0 мВ делают это устройство отличным выбором для многих применений в потребительской, автомобильной и промышленной электронике. Особенности компаратора LM393:

  • Широкий диапазон питания постоянного тока с одним источником(от 2,0 В до 36 В);
  • Диапазон двуполярного питания от 1,0 В до 18 В постоянного тока;
  • Очень низкий ток покоя, независящий от напряжения питания(0,4 мА);
  • Низкий синфазный входной ток смещения(25 нА);
  • Низкий дифференциальный входной ток смещения(5 нА);
  • Низкое входное напряжение смещения(5,0 мВ макс.);
  • Дифференциальное входное напряжение, равное напряжению питания;
  • Выходное напряжение, совместимое с логическими уровнями DTL, ECL, TTL, MOS и CMOS;
  • Температура окружающей среды от 0 ° C до 70 ° C.

У микросхемы восемь выводов, два из которых общий(4) и плюс питания(8), два других выходы: 1 — выход компаратора A, 7 — выход компаратора B. Выводы 2 и 3 соответственно инверсный и прямой вход компаратора A, а выводы 5 и 6 соответственно прямой и инверсный входы компаратора B. Представляю так же внутреннюю схему одного из компараторов:

Как видно из схемы выход компаратора представляет из себя каскад на транзисторе с открытым коллектором.

Весь модуль в собранном виде не больше длины спичинки и легко может уместится в небольшом пространстве:

Перейдем к проверке и для этого нам понадобится:

  1. блок питания небольшой мощности на 5 Вольт;
  2. разъём для подключения к штырькам модуля;
  3. светодиод для индикации сигнала на выходе;
  4. токоограничительный резистор для светодиода на сопротивление 220 Ом;
  5. ну и собственно сам модуль разумеется

Проверять мы будем самым простым способом, без всяких контроллеров, и все это мы соединим по следующей схеме:

В описании к модулю говорится что он будет работать при напряжении от 3 В до 5 В и мы будем проверять с напряжением питания 5 В. Хочу отметить одну особенность — в начале я говорил, что на штырьке выхода подписано +OUT и что это не совсем так. Из внутренней схемы компаратора, на котором собран модуль, видно что коллектор выходного транзистора никуда не подключён и на нём никак не может быть «+», хотя на плате модуля установлен резистор смещения между выходом и плюсом питания на 10 кОм, но в некоторых случаях этого может быть недостаточным, и при этом получается что выход работает инверсно: при срабатывании датчика на выходе будет логический «0». Это нужно учесть при конструировании некоторых поделок. Сначала я все же поверил надписи на плате и подключил светодиод между выходом и общим проводом, но светодиод начинал светится сразу при подаче питания без препятствия перед модулем, а во время срабатывания при поднесении препятствия на 3 см. он наоборот гаснет:

Читать еще:  Лучший инструмент для снятия изоляции с проводов

Пришлось подключить светодиод между выходом и плюсом питания. Собираем правильную схему и подаём напряжение питания:

Видим что без препятствия светодиод не светится.

Замеряем ток и видим что без препятствия в режиме покоя ток потребления 36 мА:

После срабатывания светится светодиод индикации наличия сигнала и потребляемый ток увеличивается до 47 мА:

Изменяя сопротивление подстроечного резистора я замерил стабильное минимально И максимально возможное расстояние срабатывания датчика. При вращении оси подстроечного резистора против часовой стрелки расстояние срабатывания уменьшается и минимально возможное расстояние составило 1 см.:

При вращении же оси подстроечного резистора по часовой стрелке расстояние срабатывания датчика увеличивается и максимальное надёжное расстояние срабатывания датчика составило около 12 см.:

В темноте хорошо заметно, что срабатывание датчика происходит не резко скачком, а плавно. При приближении препятствия к датчику выходное напряжение возрастает постепенно, и так же постепенно уменьшается при удалении препятствия от датчика. Это говорит о невысоком качестве датчика, но оно оправдано весьма низкой его стоимостью:

Я специально произвел проверку модуля без контроллера подручными и доступными средствами, чтобы все было просто и наглядно. Не малую роль так же играет повторяемость.

Хочу добавить, что я собираюсь использовать этот модуль в автономной конструкции и меня не устраивает такой большой ток потребления. Это был просто обзор и проверка работоспособности, а что можно сделать для уменьшения потребляемого тока я расскажу в другой статье.

Источник: cxem.net

Lm393p описание на русском принцип работы

Прошло почти два года с тех пор, как я пытался приручить операционный усилитель УД708 для сравнения двух сигналов. Знаний тогда было мало, поэтому времени уходило много, а главное — еще и безрезультатно. Но в итоге для своей задачи я смог «договориться» с компаратором LM393N. А на днях перебирал поделку, в которой впервые использовал эту микросхему, и решил вспомнить, как работает компаратор. Заодно и другим рассказать.
Компаратор — это устройство, сравнивающее два аналоговых сигнала. В самом простом случае — операционный усилитель без обратных связей. На входы ему подаются два напряжения — эталонное, оно же опорное (известно заранее) и измеряемое. На выходе возможны два состояния:

«1» — когда напряжение на прямом входе больше, чем на инвертирующем;
«0» — когда напряжение на прямом входе меньше, чем на инвертирующем.

Некоторые компараторы самостоятельно формируют уровни логических нуля и единицы (например, «ноль» — это ноль, «единица» — плюс пять вольт), но LM393 — с открытым коллектором. Ей для создания выходного напряжения нужен внешний резистор, подключающийся либо к «плюсу» питания, либо к другому «плюсу» (в разумных пределах, конечно).

Первые две схемы — каноничное включение нагрузки под открытый коллектор. Я подключал внешний резистор к питающему «плюсу».

Включение 1


В корпусе микросхемы содержатся два компаратора.
IN (-) — инвертирующий вход, IN (+) — прямой. Сейчас делитель подключен на инвертирующий вход, измеряемое напряжение — на прямой.
R1 и R2 — резистивный делитель, с которого идет опорное напряжение.
R3 — внешний резистор. Я для экспериментов взял 1 кОм.
R4 — токоограничивающий резистор для светодиода. Для другой нагрузки (например, обмотки реле) он может оказаться ненужным.


Питание — 9 вольт. С делителя (желтый провод) идут 6 вольт. Синий провод (измеряемое напряжение) идет к потенциометру ручной регулировки.
хемы на фотографиях могут несколько отличаться друг от друга — было две серии экспериментов).


Напряжение на прямом входе (0 В) меньше, чем напряжение на инвертирующем (6 В). Компаратор выдает «ноль».


Напряжение на прямом входе (6,14 В) стало больше, чем на инвертирующем. Компаратор «перещелкнулся» на «единицу», светодиод включился.

Где можно применить: индикатор закипания охлаждающей жидкости.


Опорное напряжение задается равным напряжению, которое выдает датчик температуры при ста градусах.

Включение 2


Измеряемое напряжение подается на инвертирующий вход, опорное — на прямой.


Пока напряжение на инвертирующем входе меньше, чем на прямом, компаратор выдает «единицу», и светодиод горит. В противном случае — «ноль».

Где можно применить: индикатор низкого давления масла.


Опорное напряжение задается равным напряжению, которое выдает датчик давления при критически низком давлении в системе.

Индикатор «топливо на исходе».


Опорное напряжение задается равным напряжению, которое выдает датчик уровня при малом остатке топлива в баке.

Индикатор разряда батареи. Здесь опорное напряжение лучше создать стабилитроном, а измеряемое подавать через делитель. Очень хорошо об этом написано здесь. Такую железяку я собирал — работает.

И еще две схемы — неканоничное включение нагрузки: светодиод через резистор подключается непосредственно к выходу компаратора. В этом случае логика его работы обратна.

«0» — когда напряжение на прямом входе больше, чем на инвертирующем;
«1» — когда напряжение на прямом входе меньше, чем на инвертирующем.

Включение 3


Опорное напряжение — на инвертирующем входе, измеряемое — на прямом.


Напряжение на прямом входе меньше, чем на инвертирующем — светодиод горит. В противном случае — нет.

Включение 4


Измеряемое напряжение подается на инвертирующий вход, опорное — на прямой.

Читать еще:  1N4007s и 1n4007 чем отличаются


Пока напряжение на инвертирующем входе меньше, чем на прямом, компаратор выдает «ноль», и светодиод не горит. Иначе — «единица».

Вообще, лучше, конечно, пользоваться первыми двумя общепринятыми схемами, чтобы не было путаницы.


Еще один важный момент — подключение нагрузки (светодиода) к другому напряжению (как мог, изобразил 24 вольта). Справедливо для любого из ранее изображенных включений.

О нагрузке. В даташите о максимальном токе коллектора сказано, что больше 6-20 мА микросхема не выдаст. То есть включить один светодиод — не проблема, а вот что побольше…


Кусок светодиодной ленты, подключенный прямо к выходу компаратора (по третьей или четвертой схеме, без резистора R3) светил слабо (1 мА). Пришлось поддать напряжения до 12 вольт, и тогда ток коллектора вырос до 14 мА. При подключении ленты напрямую к блоку питания — 32 мА. Таким образом, как ни крути, а максимум, что можно получить конкретно от этой LM-ки — 14 мА.

Вывод — что-то прожорливое есть смысл пускать через транзистор, загнанный в ключевой режим. При этом каскаду с общим эмиттером, инвертирующему сигнал, как нельзя лучше подойдет третья или четвертая схемы включения. Ведь если сигнал инвертировать дважды — получится опять исходный сигнал.
Например, на прямом входе компаратора «единица» (по привычной логике — на прямом входе напряжение больше, чем на инвертирующем). Третья схема сделает из нее «ноль» на выходе. А каскад с общим эмиттером, «перевернув» этот «ноль», опять даст «единицу».


Стрелка цепляется к выходу компаратора (R1 — это R3 из предыдущей схемы). R2, возможно, придется подобрать: если он будет слишком маленьким, то транзистор может сгореть, а если слишком большим — не откроется (можно попробовать 4,7 кОм). При подаче «единицы» в базе транзистора должно быть примерно 0,7 В (для кремния). К R3 тоже есть вопросы, но слишком малым и он не должен быть.


Моделирование. Когда на входе «ноль» (а «ноль» третьей и четвертой схемы — это в нормальном включении «единица»), то на выходе — «единица», светодиод работает. С чего начали, к тому и пришли — «единица» опять стала сама собой.


Теперь, когда на входе «единица», то на выходе «ноль». Вот она, знаменитая инверсия каскада с общим эмиттером!

А если включать нагрузку в коллектор транзистора, то «единицы» и «нули» по входу и выходу будут совпадать.
В общем, простор для творчества — колоссальный.

Источник: huxfluxdeluxe.wordpress.com

Обзор модуля освещенности, LM393

Автор: Сергей · Опубликовано 27.01.2017 · Обновлено 27.09.2019

Модуль освещенности на LM393, используется для измерения интенсивности света в различных устройствах, таких как, автоматизация света (включении света ночью), роботах (определения дня или ночи) и приборов контролирующих уровень освещенности. Измерения осуществляется с помощью светочувствительного элемента (фоторезистора), который меняет сопротивление в зависимости от освещенности.

Технические параметры

► Напряжение питания: 3.3 В

5.5 В
► Потребляемый ток: 10 мА
► Цифрового выход: TTL (лог 1 или лог 0)
► Аналогового выход: 0 В … Vcc
► Диаметр монтажного отверстия: 2.5 мм
► Выходной ток: 15 мА
► Габариты: 42мм х 15мм х 8мм

Общие сведения

Существует два модуля, визуально отличие только в количестве выводов (3 pin и 4 pin), дополнительный вывод добавлен, для снятие прямых показаний с фоторезистора (аналоговый выход), в статье пойдет речь о четырех контактом варианте модуля. В этих двух модулей, измерение осуществляется с помощью фоторезистора, который изменяет напряжение в цепи в зависимости от количества света, попадающего на него. Чтобы представить, как свет будет влиять на фоторезистор, приведу краткую таблицу.

Модуль освещенности с четырьмя выводами содержит два выходных контакты, аналоговый и цифровой и два контакта для подключения питания. Для считывания аналогово сигнала предусмотрен отдельный вывод «AO», с которого можно считать показания напряжения с 0 В … 3.3 В или 5 В в зависимости от используемого источника питания. Цифровой вывод DO, устанавливается в лог «0» или лог «1», в зависимости от яркости, чувствительность выхода, можно регулировать с помощью поворотного потенциометра. Выходной ток цифрового выхода, способен выдать более 15 мА, что очень упрощает использования модуля и дает возможность использовать его минуя контроллер Arduino и подключая его напрямую ко входу однокональному реле или одному из входов двухконального реле. Принципиальную схему модуля освещенности на LM393 с 3 pin и 4 pin, показана ниже.

Принципиальная схема модуля освещенности на LM393 с 4 pin

Принципиальная схема модуля освещенности на LM393 с 3 pin

Теперь, как же работает схема, фоторезистор показан Foto (IN). Основная микросхема модулей, это компаратор LM393 (U1), который производит сравнение уровней напряжений на входах INA- и INA+. Чувствительность порога срабатывания задается с помощью потенциометром R2 и в результате сравнений на выходе D0 микросхемы U1, формируется лог «0» или лог «2», который поступает на контакт D0 разъема J1.

Назначение J1 (в исполнении 4 pin)
► VCC: «+» питание модуля
► GND: «-» питание модуля
► D0: цифровой выход
► A0: аналоговый выход

Назначение J1 (в исполнении 3 pin)
► VCC: «+» питание модуля
► GND: «-» питание модуля
► D0: цифровой выход

Подключение модуля освещенности к Arduino

Необходимые детали:
► Arduino UNO R3 x 1 шт.
► Модуль освещенности, LM393, 4 pin x 1 шт.
► Провод DuPont, 2,54 мм, 20 см, F-M (Female — Male) x 1 шт.
► Кабель USB 2.0 A-B x 1 шт.

Подключение:
В данном примере буду использовать модуль освещенности, LM393, 4 pin и Arduino UNO R3, все данные будут передаваться в «Мониторинг порта». Схема не сложная, необходимо всего четыре провода, сначала подключаем шину A0 в порт A0 (Arduino UNO) и D0 в порт А1 (Arduino UNO), осталось подключить питание GND к GND и VCC к 5V (можно записать и от 3.3В), схема собрана, теперь надо подготовить программную часть.

Запускаем среду разработки и загружаем данный скетч, затем открываем мониторинг порта.

Источник: robotchip.ru

Ссылка на основную публикацию
Adblock
detector