Lm317t описание характеристики схема включения

Lm317t описание характеристики схема включения

Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения от 1,2 до 37 В.
  • Ток нагрузки до 1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Назначение выводов микросхемы:

Онлайн калькулятор LM317

Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.

Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:

Источник питания на 5 Вольт с электронным включением

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Регулируемый стабилизатор напряжения на LM317

Схема включения с регулируемым выходным напряжением

lm317 калькулятор

Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.

Скачать datasheet и калькулятор для LM317 (319,9 Kb, скачано: 40 872)

Аналог LM317

К аналогам стабилизатора LM317 можно отнести следующие стабилизаторы:

  • GL317
  • SG31
  • SG317
  • UC317T
  • ECG1900
  • LM31MDT
  • SP900
  • КР142ЕН12 (отечественный аналог)
  • КР1157ЕН1 (отечественный аналог)

Похожие записи:

34 комментария

Интересная статья! Спасибо!

Спасибо. Только ноги перепутали. У 317 1н-ADJ, 3н-INP, 2н — OUTP.
Смотреть мордой к себе, счет слева направо.

Ничего не попутано.На схеме всё правильно.Учите технический английский язык. 1-управляющий, 2-выход, 3-вход
На схеме всё правильно.

Регулируемый стабилизатор напряжения на LM317- схемка работает , только выводы 2 и 3 попутаны местами в схеме.

С какого перепугу они перепутаны? На схеме всё правильно.Внимательнее смотрите даташит на стабилизатор.

А в схеме Регулируемый стабилизатор напряжения на LM317 какой нужен трансформатор? На вторичной обмотке сколько вольт надо?

Разница между входным и выходным напряжением должна составлять 3,2 вольта, то есть, если тебе необходимо 12 вольт на выходе, то на вход нужно подать 15,2 вольта

Подскажите за что отвечает резистор (200 Ом — 240 Ом) между первой и второй ногой микросхемы ?
Сейчас собрал простейший стабилизатор на 5,15 V , резистор между 1 и 2 ногой — 680 Ом , между второй и третьей 220 Ом = на выходе сила тока всего 0,45 А . Для зарядки смартфона мне нужна сила тока 1 А .

Резисторы R1 и R2 — делитель напряжения. Подключите 220 Ом (R1) к 1 и 2 выводу, 680 Ом (R2) к 1 выводу и минусу питания.

Резисторы R1 и R2 можно подобрать и другого номинала?

да, рассчитать можно здесь

можно ли совместить на одной lm317, регулировку тока и напряжения,

Можно,я так делал.Сначала собираем регулятор напряжения,потом между adj и out ставим переменный резистор только большой мощности вата на 2. мультиметром настраиваеш всю поделку.а лучше использовать две 317 . 1-я как регулятор напр. 2-я как рег.тока. и вперед. Если собирать на 317-х лабораторник то можно парралельно их ставить (с ограничительными резисторами на выходе по 0.2 ом )например три или пять штук 317-х,только собирать с защитами (диоды )по полноценной схеме .у меня таких два штуки есть один на одной ,для маломощных нагрузок ,второй на двух .главное что б транс был нормальный мощью ват 30-50.и хватит за глаза .не варить же им !

Евгений, может скинешь схемку (или ссылку)на параллельное включение ЛМ 317 для ПБ? Я собрал, 5 штук поставил, греются не равномерно. Попробую поставлю выравнивающие резисторы по 0,2 Ома. Транс 150 Ватт, до 30В. Можно, конечно, купить БП на Али. Да решил молодость вспомнить (мне 68).

Большое Спасибо за статью.

Здравствуйте! Под рукой стабилизаторы 7812 и 7912.
Можно их применить для понижения напряжения с учетом вышеуказанного расчета и схемы?

Можно лишь изловчиться на напряжение более высокое, чем номинальное (для 7812 — больше 12 В). Для этого в цепь 2-го вывода включают N число диодов, тогда приблизительно получится Uвых=12+0,65N; вместо диодов можно подобрать резистор. При этом корпус микросхемы должен быть изолирован от общего провода вопреки стандартному включению.

Я так понимаю-если стабилизатор не 317 ,а на рассчитанное своё напряжение например 7812,то меньше чем 12 никак не получить,а вот больше по этой методике пожалуйста.

Сделал, работает хорошо.Регулирует от 1,2 В до 35В. После 0,5 А греется. Поставил на радиатор. Решил добавить два транзистора кт 819, поставил уравнивающие резисторы по 0,5 Ом. Регулировка от 0 до 10В — нормально. Если до 20В, то регулировка начинается от 10 и до 20, при 30В — от 20 до 30В, т.е. не от 1,3В. Может поможете? Может ещё кто посоветует. Хотелось бы сделать БП на ЛМ317 + транзисторы. Вам спасибо большое. А может сделать как советует jenya900?

Спасибо за схему,а как увеличить ток до10А?

Как ограничить напряжение на выходе максим. 9вольт, при переменном резисторе 8кОм. Спасибо

Каков температурный диапазон эксплуатации LM317T?

Купил гравёр. Сразу не запустился. Разобрал. Стоит линейный стабилизатор напряжения на LM317T. R1=100 Om, R2= последовательно 150 Om и переменное 1кОм. Между выходом и входом LM317T стоит конденсатор. Все компоненты нано. При включении заряжается ёмкость и когда напряжение достигает около 3В включается. Это где-то пол минуты. Зачем стоит ёмкость? Питание usb 5B. На выходе около 2В. Как всё это исправить? Мне нужно на выходе 3В. Менять переменное R нельзя. Можно менять R1, R2, C1.

Кто-нибудь пробовал параллелить микросхемы?

Ну пока сам не сделаешь, никто не пошевелится рассказать.
Соединил в параллель вчистую (т.е. ножка к ножке без всяких уравнивающих сопротивлений) 5 штук. Нагрузил на 3,8А (больше не требовалось), напряжение на выходе просело с 14В до 13,8В. Приемлемо.
Так что годится такой вариант.

Я всегда паралелю, чтоб запас был, если нагрузка большая. Всё хорошо работает.

Помогите чайнику. Если в стабилизаторе напряжения на вход подать напряжение меньше, чем установленное на выход, что будет на выходе? Нужно, чтобы схема начала пропускать ток при росте напряжения, начиная с 12 вольт.

Микросхема ни работает как «клапан»! Она ни откроется резко после превышения напряжения на входе микросхемы. Если на выходе у тебя настроено 12в, а на вход подать 9. То на выходе стабилизированного тока ни будет, выйдут те же твои 9 вольт примерно, даже меньше ( минус опорное напряжение микросхемы)

Привет. Помогите сделать бп на lm317 и поливике irf640. Нужна схема

Собирайте лучше на других стабилизаторах. LM317 прошлый век, это как лампа и транзистор. Берите и собирайте на lm2596 или lm2576. КПД до 85%, ток до 3 ампер и стабильны. Держат КЗ и перегрузки. Есть ещё более лучше варианты, но они дороже.

LM2596 — это импульсный преобразователь, LM317 — линейный. И пока существует очевидная нужда в качественном питании без пульсаций и импульсных помех, LM317 и ей подобные останутся самым дешёвым и эффективным способом его получения.

Согласен. Это два разных преобразователя. Но человеку нужен простой БП и судя по всему, мощный. Вот и рекомендовал. У импульсного и линейного БП, есть свои недостатки и свои плюсы.

Источник: www.joyta.ru

Характеристики микросхемы lm317t

Регулируемый трехвыводный линейный стабилизатор напряжения и тока LM317t, характеристики которого позволяют используется его в схемах включения регулируемых блоков питания. Очень часто используется в светодиодных устройствах. В этой статье Вы узнаете основные возможности этой микросхемы, eё распиновку, технические параметры и принцип работы. Увидите, как используя всего несколько радиодеталей можно добиться получения необходимых выходных параметров.

Контакты микросхемы

Изготовляется в универсальном транзисторном корпусе, позволяющем размещать его на плате или теплоотводе. Наиболее распространённая модель LM317 встречается в корпусе TO-220 с буквой «Т» в конце маркировки. Буква «t» обозначает тип корпуса.

Цоколевка стабилизатора LM317 производится по трем контактам. Если смотреть на устройство спереди, то первый контакт слева (Adj) — это регулируемый вывод, средний (Vout) – выход и последний справа (Vin) — вход.

  • Vin — это вывод, на него подается входное напряжение, которое нужно регулировать. Например, на него может подаваться 12 В, которое устройство будет понижать до 10 В на Vout.
  • Vout — это вывод, на который выводится напряжение. Поверхность радиатора соединена с этим выводом микросхемы.
  • Регулируемый (Adj) — это вывод, который позволяет регулировать выходное напряжение через подстрочный резистор.

Встречается в различных видов корпусов.

Номера контактов разных типов корпусов микросхемы.

Характеристики

Технические параметры LM317 при температуре окружающей среды +25 °C:

  • корпус TO-220, TO-220FP, TO-3, D2PAK, SOT-23;
  • материал корпуса — пластмасса;
  • диапазон от 1.25 до 37 В;
  • сила тока на выходе не более 1.5 А;
  • нестабильность на выходе до 0,1 %;
  • опорное (Vref) от 0,1 до 1,3 В;
  • ток вытекающий из вывода подстройки (Iadj) от 50 до 100 мкА (µA);
  • от короткого замыкания (Internal Short-Circuit Current Limiting);
  • от тепловой перегрузки (Thermal Overload Protection);
  • ограничение по максимальной рассеиваемой мощности (Output Safe-Area Compensation);

Наличие параметра Output Safe-Area Compensatio означает, что в микросхеме есть датчики “теплового ограничения”, которые ограничивают максимальную рассеиваемую мощности, при её превышении она выключится и не пострадает.

Все системы защиты от перегрузок остаются полностью работоспособными даже если вход регулирования отключен.

Схема включения

Зная номера контактов и их назначение можно понизить напряжение, подаваемое на вход микросхемы до необходимого значения. Для этого надо изменить сопротивление R1, подключенного к регулируемому выводу Adj. Давайте посмотрим как это выглядит.

Как видно на схеме включения lm317 к контакту Adj надо подключить два резистора R1 и R2. Они определяют напряжение, которое понижает стабилизатор и выдает на выход. Посмотрим следующую формулу выходного напряжения.

Исходя из формулы видно, что величина Vout зависит от значения резистора R2.Чем больше увеличивается значение сопротивления R2, тем больше будет выходное напряжение.

Пример стабилизации напряжения на LM317

Допустим надо подать на микросхему 12 вольт и отрегулировать его до 5. Исходя из формулы, приведенной выше, для того, чтобы LM317 выдал 5 вольт и выступал в роли регулятора напряжения, значение R2 должно быть 720 Ом.

Соберите указанную выше схему. Затем с помощью мультиметра проверьте выходное напряжение, поместив его щупы на конденсатор емкостью 1 мкФ. Если схема собрана правильно, то на её выходе будет около 5 вольт.

Входной конденсатор С1 можно не использовать, если корпус микросхемы расположен не менее 15 сантиметров от входного сглаживающего фильтра. Выходной конденсатор С2 добавляют для сглаживания переходных процессов.

Теперь замените резистор R2 и установите на его место номинал со значением 1,5 кОм. Теперь на выходе должно быть около 10 В. Это преимущество этих миросхем. Вы можете настроить их на любое напряжение в пределах диапазона, указанного в его характеристиках.

Читать еще:  Что такое алидада в теодолите

Принцип работы

Соберем простой стабилизатор напряжения используя LM317 согласно схеме.

Подключим на вход Vin источник постоянного питания. Как уже было написано ранее, к этим контактам надо подать входное напряжение, которое микросхема затем понизит в зависимости от нагрузки. Оно должно быть больше, чем на выходе.

Допустим используя эту схему надо получить 5 В нагрузке. Следовательно, на вход Vin надо подать больше чем 5 вольт. Как правило, если микросхема LM317, не является регулятором с малым падением надо, чтобы входное напряжение примерно на 2 вольта было выше выходного. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Регулятор с малым падением напряжения – устройство с низким падением на переходе, примерно от 1 до 1,5 вольт. В качестве регулирующего элемента обычно используется одинарный npn-транзистор.

Контакт Adj позволяет отрегулировать напряжение на выходе до уровня, который мы хотим.Рассчитаем, какое значение сопротивления R2 даст на выходе устройства 5 вольт. Используя формулу для выходного напряжения можно узнать значение сопротивления R2.

Так как сопротивление R1 равно 240 Ом, а выходное напряжение равно 5 В, то R2 согласно формуле будет равно 720 Ом. Таким образом, при значении R2 =720 Ом, LM317 будет выдавать 5 В, при подаче на её вход более 5 Вольт.

Драйвер тока

Драйвер тока (LED Driver) поддерживает ток и напряжение в цепи нагрузки в независимости от поданного на него постоянного питания. Известно, что светодиод является полупроводниковым прибором, который следует запитать током, указанным в характеристиках светодиода.

Используя схему стабилизации как показано в DataSheet можно собрать на LM317 простую схему драйвера тока.

Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. У маломощных светодиодов ток потребления составляет порядка 20 мА или 0,02 А. Для подбора необходимого сопротивления используют формулу, где Iout это ток на выходе микросхемы, необходимый для питания светодиодов.

Используя формулу, получаем значение номинала резистора с сопротивлением 62.5 Ома. Для избежания перегрева микросхемы подбирают необходимую мощности резистора по формуле.

Собрав схему и подав питание, получают простейший драйвер стабилизации тока для светодиодов. Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.

Номинал необходимого резистора R1, можно подобрать, используя обычный подстроечный проволочный резистор на сопротивление 0.5 кОм. Для этого сначала проверяют его сопротивление между среднем и любым из крайних выводов. С помощью мультиметра, вращая регулирующий стержень, добиваемся значения сопротивления 500 Ом, чтобы не сжечь подключенный светодиод при включении.

Затем подключают в схему со светодиодом. Чтобы выбрать подходящий номинал резистора, после подачи питания изменяют сопротивление подстроечного резистора до требуемого тока светодиода.

Онлайн-калькулятор

Для расчета параметров радиоэлементов в схемах с LM317 в сети интернет существует множество онлайн-калькуляторов:

  • для расчета резистора R2, при известном выходном напряжении и сопротивлении резистора R1;
  • для вычисления напряжения на выходе стабилизатора, при известном сопротивлении двух резисторов (R1 и R2);
  • для расчета сопротивления и мощности резистора, при известном значении силы тока на выходе микросхемы и др.

Как проверить lm317 мультиметром ?

Мультиметром микросхемы проверить нельзя, так как это не транзистор. Что-то протестировать между контактами конечно можно, но это не гарантирует исправность микросхемы, так как она содержит большое количество различных радиоэлементов (транзисторов, резисторов и др.), которые не соединены с выводами напрямую и не «прозваниваются». Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки, . Стенд должен представлять собой простейший стабилизатор (пару конденсаторов и резисторов).

Зарубежные и российские аналоги

Чем можно заменить lm317 ? Полными аналогами микросхемы являются GL317, SG317, UPC317, ECG1900. Очень известным отечественным аналогом lm317t c фиксированным напряжением является микросхема KP142ЕН12. Если нужен регулируемый линейный стабилизатор, то подойдет КРЕН12А (можно и Б).

Безопасность при эксплуатации

Максимальное напряжение между входом и выходом не должно превышать 40 В. Мощность рассеивания не более 20 Вт. Температура пайки не должна превышать 260 °С, при соблюдении расстоянии от корпуса микросхемы более 1,6 мм и времени нагревания до 10 секунд. Температура хранения устройства должна находится в пределах от -65 до + 150 °С, рабочая температура не более + 150 °С.

Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Микросхема хорошо защищена от тепловой перегрузки и короткого замыкания контактов. Однако не стоит превышать допустимые параметры при эксплуатации, для избежания выхода её из строя и достижения максимально надежной работы.

Производители

LM317t выпускают многие именитые производители, ниже представим их вместе с DataSheet:

Источник: shematok.ru

LM317T схема включения

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА. Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.
Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.
Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

R1, Ом R2, Ом
LM317T схема включения 5v 120 360
LM317T схема включения 12v 240 2000

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

  • для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
  • LM350K — 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K — 5 А

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

24 thoughts on “ LM317T схема включения ”

Для lm317 datasheet от TI тут.
Кому сложно читать datasheet на английском, то можно посмотреть документацию на русском для отечественного аналога КР142ЕН12А.

Кроме мощных аналогов, есть и маломощные LM317L рассчитанные на ток не более 0,1 А, в корпусах SOIC-8 и TO-92.

  • LM317LM — в поверхностном корпусе SOIC-8;
  • LM317LZ — в штырьевом корпусе TO-92.

Не забудьте установить микросхему на радиатор, надо помнить, что корпус не изолирован от вывода. Чем больше падение напряжения на микросхеме — разница между входным и выходным напряжением, тем меньше максимальная мощность.

Я бы уточнил, что от падения напряжения зависит «максимальная выходная мощность».
А максимальная мощность рассеиваемая на микросхеме зависит от корпуса и эффективности охлаждения.

Макс. мощность, рассеиваемая микросхемой — паспортная величина и не может быть превышена при любом охлаждении.

Оверклокеры с таким утверждением не соглясятся
Да я и не призываю «разгонять» стабилизаторы напряжения, даже наоборот: соблюдение рекомендаций производителя компонентов, важное условие надежной работы электронного устройста.
Если невозможно или слишком дорого обеспечивать надежное охлаждение, то нужно снижать планку максимально возможной мощности. А определить эту максимальную мощность можно зная максимально допустимую температуру кристалла, максимальную температуру окружающей среды и все тепловые сопротивления от кристалла до окружающей среды.

Есть паспортная максимальная мощность, которая кстати зависит от корпуса стабилизатора. А есть реальная максимальная мощность, которая получится при реальном максимальном напряжении и реальном максимальном токе. Так вот эта мощность нисколько не паспортная величина.

Читать еще:  Канифоли много не бывает

Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — не менее времени Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — минимальное время наработки на отказ, указанное в паспортных данных.

Тепловая и электрическая мощности — это немного разные параметры, хотя и взаимосвязанные.

Всегда относился к данной микросхеме, как к стабилизатору для начинающих, которые и запитывать от нее будут такие-же устройства.
Главную, на мой взгляд, мысль данной статьи: «…использовать в случае типовых напряжений, только когда…» — надо выделить жирным. Ее же, в таких случаях, не использовать вообще. Применять можно в малоточных регуляторах, где ни КПД, ни прецизионность стабилизации на динамическую нагрузку не важны.
Использование токовых усилителей, как на последней схеме, рентабельно применять только для фиксированных напряжений.

Любопытно вот, насколько критично включение танталовых конденсаторов на входе и выходе LM317, как то рекомендует даташит? Никогда не шунтировал ее входы/выходы чем-то лучшим чем самые обычные электролитические конденсаторы плюс (иногда) керамика. И ни разу не получил самовозбуждения. То же самое с LM7805 и LM7812 (и с их отечественными аналогами). Как только не изгалялся, даже подключал конденсаторы длинными проводами. Прокатывало, ни один стабилизатор не «завелся». Разработчики перестраховались или рекомендация относительно танталовых конденсаторов непосредственно возле выводов микросхемы касается каких-то особых условий эксплуатации?

В некоторых схемах для некоторых задач (схемы с аудиоусилением, например) шумы стабилизатора заметны даже на слух. В некоторых других частных случаях из-за «шума» работы стабилизатора возникали нежданчики, которые не устранялись конденсаторами для «ЦП или ОЗУ по питанию». Для описания ситуации, когда такое происходит нужен «талмуд» листов пот тысячу. Производитель , который получал недоумённо-ругательные «комментарии» разработчиков — подстраховалсяотмазался коротким упоминанием о необходимости конденсаторов.

Действительно, странноватая рекомендация… Особенно, если учесть, что стоимость танталовых конденсаторов, превышает стоимость самой микросхемы, как правило. 317-ю использовал редко, а вот 7805 и 7812 — десятками, и никогда проблем, обусловленных отсутствием редкоземельных и драгсодержащих элементов, не было. Присоединяюсь к удивлению, так как никаких особых условий использования, придумать не могу. Стабильный стабилизатор, вот и весь каламбур ) ЦП или ОЗУ по питанию подстраховать, это еще могу понять, а его… не могу.

Отличая микросхема.Так и хочется поехать , купить и спаять что-нибудь. На этапе разработке часто не хватает такого , чтобы напряжением поиграть , двуполярное сделать. Да и помощнее есть устройства с таким же включением.

Как можно сделать схему, чтобы было два режима стабилизации тока. У меня к одной лампе подходит один плюс и два минуса. Нужно, чтобы по одному минусу было ярко, а по другому тускло.

Микросхема о которой ведется речь — регулируемый стабилизатор напряжения, не тока. Для вашей задачи подойдут обычные биполярные транзисторы используемые в качестве усилителей тока. Два корпуса. Их мощность должна соответствовать мощности вашей лампы, а напряжение — питающему напряжению. Ток, обеспечивающий желаемую тусклость задайте базовым резистором, можно подстроечным. И, желательно, в вопрос вкладывать побольше информации… лампа, а какая? Много их, разных.

А через диод подай отрицательный полупериод с трансформатора -! Будет тебе «ночничок», и не надо три провода тянуть через подушку…

Хочу собрать на LM317 зарядное устройство для NI-MH аккумалятора (одного). На входе — 5 вольт, на выходе — 1,5 вольт. Схему уже нашел. Но там 5 вольт берут с USB порта компьютера. А можно ли взять 5 вольт с зарядки от мобильного телефона? И, наверное, нужно выбрать такую зарядку, у которой выходной ток — не меньше, чем ток зарядки аккумулятора?

Конечно, вполне можно питать и от зарядки. Да, и ток источника должен быть не меньше тока потребителя.

Про ток зарядки от мобильника можете не беспокоиться — вряд ли вам удастся найти такую, ток которой был бы ниже, чем ток выдаваемый с порта USB. Как правило, он составляет 0,6-0,7 А. Этого вполне достаточно для зарядки не менее, чем 5-амперного аккумулятора. Если нужно больше, то зарядное просто не подойдет — это настолько стандартизированное изделие, что больше, чем на 0,75 А — вам вряд ли удастся найти.

Да есть же уже ЗУ с токами 1 и 2 А для зарядки смартфонов или планшетов, как раз многие из них уже с портом usb. Но тут уже стоит обратить внимание на качественный кабель, или спаять самому, стандартные китайские кабели такие токи редко способны передать

Вы немного путаете порт USB с его разъемом. Понимаете, USB, в первую очередь — Serial Bus, а уж во вторую — Universal. Вторая причина и послужила столь частому, но не совсем профильному использованию данного Разъема в различных блоках питания и зарядных устройствах, что не оснащает их, непосредственно Портом. А что касается кабелей USB, то они, по определению, должны соответствовать стандартам своего класса (1.1; 2.0; 3.0), а не тому, что вы подразумеваете под «китайским стандартом».

Частоту бы узнать максимальную, с которой эта микросхема работает. Если у меня идет коммутация импульсов с частотой 10 КГц, будет ли она держать ток каждого импульса в пределах значений, заданных резистором?
И как лучше её расположить на схема? Рис прилагаю.
https://sun9-1.userapi.com/c639822/v639822216/5396d/MX1daHe-rjs.jpg

Этот стабилизатор для работы на постоянном токе.
Если нужно получить пульсирующий ток, то правильнее будет «закорачивать» оптроном нагрузку.
Но применять в таком случае интегральный стабилизатор, я бы не стал. А собрал бы простенький стабилизатор на транзисторе и стабилитроне. Например такой: http://hardelectronics.ru/drajver-dlya-svetodiodov.html
Ну не предназначены интегральные стабилизаторы постоянного напряжения, для стабилизации пульсирующего тока.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Какой ток или мощность потребляет сама м-схема в режиме холостого хода без нагрузки?

Так и не понял, как регулировать выходное напряжение

Источник: hardelectronics.ru

Регулируемые стабилизаторы LM317 и LM337. Особенности применения

Опубликовано: Август 18, 2012 • Рубрика: Блоки питания

В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.

Но! Часто бывает, при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.

Как получить от этих микросхем максимум и избежать типовых ошибок?

Об этом по-порядку:

Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337 — регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.

Обращаю особое внимание, что цоколёвки у этих микросхем различные!

Даташит производителя: datasheet LM317 (pdf-формат 1041 кб), datasheet lm337 (pdf-формат 43кб).

Цоколёвка LM317 и LM337:

Типовая схема включения LM317:

Увеличение по клику

Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:

Uвых=1,25*(1+R1/R2)+Iadj*R1

где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.

Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.

Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.

Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!
1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:

  • Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
  • Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ. Установка емкости больше указанного значения ощутимого эффекта не даёт.

Увеличение по клику

увеличение по клику

Важно: для микросхем LM337 полярность включения диодов следует поменять!

3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.

Получаем итоговый вариант схемы:

Увеличение по клику

4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!

Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.

5. Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:

Увеличение по клику

Пояснения к схеме:

  1. длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
  2. для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
  3. проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
  4. так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).

Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.

Понравилась статья? Расскажи друзьям:

Похожие статьи:

Следите за новостями портала:

14 комментариев к “Регулируемые стабилизаторы LM317 и LM337. Особенности применения”

Отечественные аналоги микросхем:

Микросхема 142ЕН12 выпускалась с разными вариантами цоколёвки, так что будьте внимательны при их использовании!

В связи с широкой доступностью и низкой стоимостью оригинальных микросхем

лучше не тратить время, деньги и нервы.

Используйте LM317 и LM337.

Здравствуйте, уважаемый Главный Редактор! Я у Вас зарегистрирован и мне тоже очень хочется прочесть всю статью, изучить Ваши рекомендации по применению LM317. Но, к сожалению, что-то не могу просмотреть всю статью. Что мне необходимо сделать? Порадуйте меня, пожалуйста, полной статьей.

С уважением Сергей Храбан

Я Вам очень благодарен, спасибо большое! Всех благ!

Уважаемый главный редактор! Собрал двух полярник на lm317 и lm337. Все прекрасно работает за исключением разности напряжений в плечах. Разница не велика, но осадок имеется. Не могли бы Вы подсказать, как добиться равных напряжений, а главное причина подобного перекоса в чем. Заранее благодарен Вам за ответ. С пожеланием творческих успехов Олег.

Уважаемый Олег, разница напряжений в плечах обусловлена:

1. разницей опорных напряжений микросхем. То что в паспорте указано 1,25В — это идеальный случай (или усреднённое значение). Подробнее здесь: radiopages.ru/accurate_lm317.html

Читать еще:  Лучшие ушм 125 мм с регулировкой оборотов

2. отклонение значений задающих резисторов. Следует помнить, что резисторы имеют допуски 1%, 5%, 10% и даже 20%. То есть, если на резисторе написано 2кОм, его реально сопротивление может быть в районе 1800—2200 Ом (при допуске 10%)

Даже если Вы поставите многооборотные резисторы в цепи управления и с их помощью точно выставите необходимые значения, то. при изменении температуры окружающей среды напряжения всё равно уплывут. Так как резисторы не факт что прогреются (остынут) одинаково или изменяться на одинаковую величину.

Решить Вашу проблему можно, используя схемы с операционными усилителями, которые отслеживают сигнал ошибки (разницу выходных напряжений) и производят необходимую корректировку.

Рассмотрение таких схем выходит за рамки данной статьи. Гугл в помощь.

Уважаемый редактор!Благодарю Вас за подробный ответ, который вызвал уточнения- насколько критично для унч, предварительных каскадов, питание с разностью в плечах в 0,5- 1 вольт? С уважением Олег

Разность напряжений в плечах чревата в первую очередь несимметричным ограничением сигнала (на больших уровнях) и появлением на выходе постоянной составляющей и др.

Если тракт не имеет разделительных конденсаторов, то даже незначительное постоянное напряжение, появившееся на выходе первых каскадов, будет многократно усилено последующими каскадами и на выходе станет существенной величиной.

Для усилителей мощности с питанием (обычно) 33-55В разница напряжений в плечах может быть 0,5-1В, для предварительных усилителей лучше уложиться в 0,2В.

Уважаемый редактор! Благодарю вас за подробные, обстоятельные ответы. И, если позволите, еще вопрос: Без нагрузки разность напряжений в плечах составляет 0,02- 0,06 вольт. При подключении нагрузки положительное плечо +12 вольт, отрицательное -10,5 вольт. С чем связан такой перекос? Можно ли подстроить равенство выходных напряжений не на холостом ходу, а под нагрузкой. С уважением Олег

Если делать всё правильно, то стабилизаторы надо настраивать под нагрузкой. МИНИМАЛЬНЫЙ ток нагрузки указан в даташите. Хотя, как показывает практика, получается и на холостом ходу.

А вот то, что отрицательное плечо проседает аж на 2В, это неправильно. Нагрузка одинаковая?

Тут либо ошибки в монтаже, либо левая (китайская) микросхема, либо что-то ещё. Ни один доктор не будет ставить диагноз по телефону или переписке. Я тоже на расстоянии лечить не умею!

А Вы обратили внимание что у LM317 и LM337 разное расположение выводов! Может в этом проблема?

Благодарю Вас за ответ и терпение. Я не прошу детального ответа. Речь идет о возможных причинах, не более. Стабилизаторы нужно настраивать под нагрузкой: то есть, условно, я подключаю к стабилизатору схему, которая будет от него запитываться и выставляю в плечах равенство напряжений. Я правильно понимаю процесс настройки стабилизатора? С уважением Олег

Олег, не очень! Так можно схему спалить. На выход стабилизатора нужно прицепить резисторы (нужной мощности и номинала), настроить выходные напряжения и лишь после этого подключать питаемую схему.

По даташиту у LM317 минимальный выходной ток 10мА. Тогда при выходном напряжении 12В на выход надо повесить резистор на 1кОм и отрегулировать напряжение. На входе стабилизатора при этом должно быть минимум 15В!

Кстати, как запитаны стабилизаторы? От одного трансформатора/обмотки или разных? При подключении нагрузки минус проседает на 2В -а как дела на входе этого плеча?

Доброго здоровья, уважаемый редактор! Транс мотал сам, одновременно две обмотки двумя проводами. На выходе на обоих обмотках по 15,2 вольта. На конденсаторах фильтра по 19,8 вольт. Сегодня, завтра проведу эксперимент и отпишусь.

Кстати у меня был казус. Собрал стабилизатор на 7812 и 7912, умощнил их транзисторами tip35 и tip36. В результате до 10 вольт регулировка напряжения в обоих плечах шла плавно, равенство напряжений было идеальным. Но выше. это было что- то. Напряжение регулировалось скачками. Причем поднимаясь в одном плече, во втором шло вниз. Причина оказалась в tip36, которые заказывал в Китае. Заменил транзистор на другой, стабилизатор стал идеально работать. Я часто покупаю детали в Китае и пришел к такому выводу: Покупать можно, но нужно выбирать поставщиков, которые продают радиодетали, изготовленные на заводах, а не в цехах какого- нибудь не понятного ИП. Выходит чуть дороже, но и качество соответствующее. С уважением Олег.

Доброго вечера, уважаемый редактор! Только сегодня появилось время. Транс со средней точкой, напряжение на обмотках 17,7 вольт. На выход стабилизатора повесил резисторы по 1 ком 2 ватта. Напряжение в обоих плечах выставил 12,54 вольта. Отключил резисторы, напряжение осталось прежним- 12,54 вольта. Подключил нагрузку (10 штук ne5532)стабилизатор работает прекрасно.

Благодарю Вас за консультации. С уважением Олег.

Добавить комментарий

Спамеры, не тратьте своё время — все комментарии модерируются.
All comments are moderated!

Вы должны авторизоваться, чтобы оставить комментарий.

Источник: radiopages.ru

Lm317t Характеристики Схема Подключения

Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов.

Например, мне необходимо ограничить ток потребления светодиодов равный мА. Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт.

Недостаток — бОльшее количество элементов, наличие помех. При низком падении lm не способна обеспечить необходимый коэффициент стабилизации, что может приводить к нежелательным пульсациям при работе.
Очень простой регулируемый блок питания на LM317

Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. В момент включения такого источника на его выходе минимальное напряжение, которое плавно увеличивается до установленного 15В по мере заряда конденсатора C1.

Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения или тока LM по цене 18 центов за штуку.

Рекомендации по номиналам конденсатора на выходе LM очень впечатляют,- это диапазон от 10 до мкФ.

А началось все с недоумения — почему это на выходе во всех схемах такой низкоомный делитель?

В Datasheets всех производителей есть параметр Adjustment Pin Current ток по входу подстройки. Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.

Схема простого регулируемого БП на LM317T Часть 1

Похожие статьи

Как проверить lm мультиметром? Мощность рассеивания не более 20 Вт.

Встречается в различных видов корпусов.

В других регуляторах регулирование осуществляется по цепи Отрицательной обратной связи, что максимально улучшает все параметры. Описание и применение

Параметр весьма интересный и важный, определяющий, в частности, максимальную величину резистора в цепи входа Adj. Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.

Простенько и со вкусом,- закрылся себе транзистор при напряжении база-эмиттер ниже 1,25 В и все тут.

Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. И уж точно — лучшую регулировку, а также и широчайший диапазон по типам и номиналам резисторов и конденсаторов.

О принципе регулирования выходного напряжения LM
Стабилизатор тока на LM 317

Мощные аналоги LM317T — LM350 и LM338

Правда, это честно показано на диаграмме Ripple Rejection. Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным.

Технические характеристики:


Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. А для LM она фактически означает степень собственной ущербности и показывает, как же хорошо LM борется с пульсациями, которые сама же берет с выхода и опять загоняет внутрь самой себя. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. Кроме отечественной интегральной схемы КРЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в раза больше.

Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Стабилизация и защита схемы Емкость С2 и диод D1 не обязательны. Аналоги lm Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Можно упростить себе жизнь, если использовать микросхему LM — аналог микросхемы LM, но на отрицательное напряжение. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора.
Блок питания на LM338T part 1

Техническая документация к электронным компонентам на русском языке.

Мощность рассеивания не более 20 Вт.

А, значит, все рекомендации и особенно схемы приложений, приводимые в datasheets, носят теоретический, рекомендательный характер.

Заинтересовавшихся прошу… Немного теории: Стабилизаторы бывают линейные и импульсные.

А в LM — при снижении выходного напряжение ниже 1,25 В. Надо бы хуже, да некуда. В процессе подбора сопротивлений допускается небольшое отклонение 8…10 мА. Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах.

Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт. Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля.

Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

Производители этих компонентов гарантируют более высокую стабильность выходного напряжения, низкий ток регулирования, повышенную мощность с тем же минимальным выходным напряжением не более 1,3 В. Что касается второго параметра Iadj, то это фактически паразитный ток. Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения или тока LM по цене 18 центов за штуку. И не удивительно в связи с этим, что в цепи Adj рекомендуется ставить конденсатор С2. Вот только одно маленькое НО … Внутренняя часть LM содержит стабилизатор тока, в котором использован стабилитрон на напряжение 6,3 В.

Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Значит, надо следить не только за максимальным током нагрузки, но и за минимальным тоже? Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт. Затем подключают в схему со светодиодом.
Параллельное включение стабилизаторов …

Источник: tokzamer.ru

Ссылка на основную публикацию
Adblock
detector