Линейчатые и нелинейчатые поверхности

Линейчатые и нелинейчатые поверхности

Линейчатые поверхности — поверхности, которые образуются с помощью прямой линии. Нелинейчатые поверхности — поверхности, которые образуются с помощью кривой линии. Развертывающиеся поверхности — поверхности, которые после разреза их по образующей могут быть совмещены с плоскостью без наличия разрывов и складок. Неразвертывающиеся поверхности — поверхности, которые не могут быть совмещены с плоскостью без наличия разрывов и складок. Поверхности с постоянной образующей — поверхности, образующая которых не изменяет своей формы в процессе образования поверхности. Поверхности с переменной образующей — поверхности, образующая которых изменяется в процессе образования поверхности.

Линейчатые развертываемые поверхности:

1. Конические поверхности задаются движением прямой линии l, проходящей через неподвижную точку М, по некоторой направляющей кривой линии а. (рис 128)

2. Цилиндрические поверхности задаются движением прямой, параллельной некоторому направлению, по заданной направляющей кривой. (рис 129)

3. Поверхность с ребром возврата (торс) образуется движением прямолинейной образующей l по некоторой кривой а так, что она остается касательной в каждой точке кривой.

Линейчатые неразвертываемые поверхности:

1) Цилиндроидобразован движением прямой, параллельной заданной плоскости параллелизма α, по двум пространственным кривым a и b.

2) Коноид образован движением прямой по одной прямолинейной направляющей n, по другой криволинейной направляющей m, оставаясь параллельной некоторой плоскости параллелизма α || π1.

3) Гиперболический параболоид, или косая плоскость, задается двумя скрещивающимися прямыми направляющими АВ, CD и плоскостью параллелизма α(απ1).

4) Однополостный гиперболоид образуется движением прямолинейной образующей l по трем прямолинейным скрещивающимся направляющим а, b, c.

5) Косой цилиндр с тремя направляющими образуется движением прямолинейной образующей по трем направляющим, одна из которых обязательно кривая.

Нелинейчатые неразвертываемые поверхности:

1) Эллипсоид трехосный образован движением переменного эллипса вдоль одной из трех его осей Х, Y, Z . Образующие эллипсы подобны.

2) Эллиптический параболоид образуется движением деформирующегося эллипса по двум направляющим параболам m и n

3) Двуполостный гиперболоид образуется движением изменяющегося эллипса по направляющей гиперболе вдоль действительной оси.

18. Точки и линии на поверхности.

Точка принадлежит поверхности, если она расположена на линии, принадлежащей поверхности. На поверхностях вращения в качестве таких линий удобно использовать параллели. Если на поверхности вращения (рис. 8.9) дана проекция М2, то для нахождения параллели, которой принадлежит точка М, проводим через М фронтально-проецирующую плоскость s (М2 ϵ s), такую что s ⊥ m. Тогда линия пересечения кривой поверхности с плоскостью s и даст искомую параллель. Радиус параллели равен расстоянию от оси вращения m1 до точки поверхности 11. Этим радиусом проводим окружность с центром в точке m1 (горизонтальной проекции оси вращения) и получаем горизонтальную проекцию параллели. На ней находим горизонтальные проекции точки М: М1 — на видимой стороне кривой поверхности, а М’1 — на невидимой.

Линия принадлежит поверхности, если все ее точки принадлежат этой поверхности. Исключение составляет случай, когда линия представлена прямой, а поверхность — плоскостью. В этом случае для принадлежности прямой плоскости достаточно, чтобы хотя бы две точки ее принадлежали этой поверхности.

Если линия не принадлежит поверхности, то они пересекаются. Простейшим случаем является пересечение с поверхностью прямой линии. Задача решается путем заключения данной линии в какую-либо проецирующую плоскость и построением натуральной величины сечения, из которого легко определить точку входа и выхода прямой.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10341 — | 7859 — или читать все.

Источник: studopedia.ru

Линейчатые и нелинейчатые поверхности

2.3.3.2. ЛИНЕЙЧАТЫЕ ПОВЕРХНОСТИ.

2.3.3.2.1. Развертывающиеся линейчатые поверхности
2.3.3.2.2. Неразвертывающиеся (косые) линейчатые поверхности

Как уже отмечалось, поверхность называется линейчатой, если она может быть образована перемещением прямой линии. Поверхность, которая не может быть образована движением прямой линии, называется нелинейчатой. Например, конус вращения — линейчатая поверхность, а сфера — нелинейчатая. Через любую точку линейчатой поверхности можно провести, по крайней мере, одну прямую, целиком принадлежащую поверхности. Множество таких прямых представляет собой непрерывный каркас линейчатой поверхности. Линейчатые поверхности разделяются на два вида:

1) развертывающиеся поверхности;
2) неразвертывающиеся, или косые поверхности.
Примечание.
Все нелинейчатые поверхности являются неразвертывающимися.

Поверхность называется развертывающейся, если она путем изгибания может быть совмещена с плоскостью без образования складок и разрывов. Очевидно, что все многогранные поверхности являются развертывающимися. Из кривых поверхностей этим свойством обладают только те линейчатые поверхности, которые имеют ребро возврата.
Существует только три вида линейчатых поверхностей, имеющих ребро возврата: торсы, конические и цилиндрические (Рис. 2.3.19) .

1) пространственная ломаная линия 1, 2, 3, 4, 5, б. преобразуется в пространственную кривую линию m;
2) ребра многогранной поверхности преобразуются в касательные к пространственной кривой m;
3) многогранная поверхность преобразуется в линейчатую двухполую развертывающуюся кривую поверхность, которая называется торсом.

Множество всех касательных прямых к пространственной кривой представляет собой непрерывный каркас поверхности торса. Через каждую точку поверхности проходит одна касательная к кривой m. Таким образом, торс представляет собой поверхность, которая образуется непрерывным движением прямолинейной образующей, касающейся во всех своих положениях некоторой пространственной кривой линии. Направляющая пространственная кривая m (рис. 2.3.20, б) служит границей между двумя полостями поверхности торса и называется ребром возврата. Если взять на кривой m какую-либо точку В и провести через нее плоскость , пересекающую обе полости поверхности, то полученная в пересечении кривая АВС будет иметь так называемую точку возврата B. Следовательно, ребро возврата является множеством точек возврата кривых линий, полученных при пересечении данной поверхности различными плоскостями. Этим и объясняется ее название. Если ребром возврата является цилиндрическая винтовая линия, то такая поверхность называется развертывающимся геликоидом. Так как углы наклона всех образующих этой поверхности к плоскости, перпендикулярной оси винтовой линии, одинаковы, она является поверхностью одинакового ската.

Плоскость, перпендикулярная оси поверхности, пересекает ее по эвольвенте окружности. Свойством развертываемости торс обладает потому, что он является пределом некоторой развертывающейся многогранной поверхности. Геометрическая часть определителя торса состоит из ребра возврата. Алгоритмическая часть определителя торса состоит из указания о том, что образующая прямая при своем движении остается касательной к ребру возврата. Если ребро возврата выродится в собственную точку пространства, то образующие торса, проходя через нее, образуют коническую поверхность произвольного вида. Если эта точка (вырожденное ребро возврата) будет несобственной точкой пространства, то образующие торса, проходя через нее, окажутся параллельными между собой и образуют цилиндрическую поверхность общего вида. Таким образом, цилиндрическая и коническая поверхности обладают свойством развертываемости, так как являются частными случаями поверхности торса. Однако, чтобы задать коническую или цилиндрическую поверхности, недостаточно иметь только ребро возврата (собственную или несобственную точку) — положение образующей прямой не определяется одной точкой. Необходимо задать еще направляющую линию.
Рис. 2.3.20, 1 анимация

Читать еще:  Медно графитовые щетки для электрогенераторов и электродвигателей

К вопросу о развертываемости кривой линейчатой поверхности можно подойти и с точки зрения дифференциальной геометрии, которая доказывает, что линейчатая поверхность является развертывающейся, если касательная плоскость, проведенная в какой-либо точке поверхности, касается ее по прямолинейной образующей поверхности, проходящей через эту точку. Таким свойством обладают только три вида поверхностей: торс, коническая и цилиндрическая.
Анимационный рис. 2.3.20. 1 показывает кинематику формирования торса, у которого в качестве направляющей взята винтовая линия. Поверхность образована перемещением прямой по направляющей пространственной кривой ( винтовой линии). В процессе движения в каждый момент времени образующая прямая является касательной к направляющей.

Цилиндрические поверхности

Неподвижная кривая m(m1 m2), по которой скользит образующая l(l1l2), называется направляющей. Если направляющая линия является кривой второго порядка, то и цилиндрическая поверхность будет второго порядка. Геометрическая часть определителя цилиндрической поверхности состоит из направляющей линии m и исходного положения образующей l (рис. 2.3.21).
Алгоритмическая часть определителя состоит из указания о том, что любая образующая поверхности может быть построена как прямая, пересекающая кривую m и параллельная прямой l. Цилиндрическая поверхность является бесконечной в направлении своих образуюших. Часть замкнутой цилиндрической поверхности, заключенная между двумя плоскими параллельными сечениями, называется цилиндром, а фигуры сечения — его основаниями (рис. 2.3.22, 2.3.23). Сечение цилиндрической поверхности плоскостью, перпендикулярной ее образующим, называется нормальным. В зависимости от формы нормального сечения цилиндры бывают:
Рис. 2.3.22

1) круговые — нормальное сечение круг (рис. 2.3.22);
2) эллиптические — нормальное сечение эллипс (рис. 2.3.23);
3) параболические — нормальное сечение парабола;
4) гиперболические — нормальное сечение гипербола;
5) общего вида — нормальное сечение кривая случайного вида (рис. 2.3.20).

Наклонные сечения прямого эллиптического цилиндра в общем случае — эллипсы. Однако его всегда можно пересечь плоскостью, наклонной к его образующим, таким образом, что в сечении получится круг. Эллиптический цилиндр имеет две системы круговых сечений (построение их рассмотрено в гл. 4). На рис. 2.3.23, а показаны плоскости Г(Г2) и Г'(Г’2), пересекающие эллиптический цилиндр по окружностям. На рис. 2.3.23, б, в выполнены чертежи наклонных эллиптических цилиндров, основаниями которых являются их круговые сечения.

Конические поверхности

Неподвижная кривая m(m1,m2), по которой скользит образующая l(l1,l2), называется направляющей. Если направляющая линия является кривой второго порядка, то и коническая поверхность будет второго порядка. Неподвижная точка S(S1,S2), делящая поверхность на две бесконечные полы, называется вершиной. Множество прямолинейных образующих представляет собой непрерывный каркас конической поверхности. Через каждую точку поверхности проходит одна прямолинейная образующая (исключением является только вершина S, которая называется «особой точкой поверхности». Геометрическая часть определителя конической поверхности состоит из направляющей кривой m и вершины S.
Алгоритмическая часть определителя состоит из указания о том, что любая образующая поверхности может быть построена как прямая, проходящая через вершину S и пересекающая кривую m. Часть замкнутой конической поверхности, ограниченная вершиной и какой-либо плоскостью, пересекающей все ее образующие, называется конусом. Фигура сечения конической поверхности этой плоскостью называется основанием конуса. Сечение конической поверхности плоскостью, перпендикулярной ее оси, называется нормальным. Осью конической поверхности называется линия пересечения ее плоскостей симметрии. Следовательно, не все конические поверхности имеют ось, а только те, которые имеют не меньше двух плоскостей симметрии.
Конические поверхности, не имеющие оси (а следовательно, и нормального сечения), называются коническими поверхностями общего вида.

Конические поверхности, имеющие ось, в зависимости от вида нормального сечения бывают:
1) круговые — нормальное сечение круг (рис. 2.3.25);
2) эллиптические — нормальное сечение эллипс (рис. 2.3.26) и другие.
Если за основание конуса принимается фигура его нормального сечения, конус называют прямым, если иное сечение — наклонным. Прямой круговой конус изображен на рис. 2.3.25, а, наклонный круговой конус — на рис. 2.3.25, б. Основанием такого конуса может быть только эллипс (см. раздел 4), ось его не проходит через центр основания.
Прямой эллиптический конус показан на рис. 2.3.26, а. Эллиптический конус (так же как и эллиптический цилиндр) имеет две системы круговых сечений. Построение круговых сечений поверхностей второго порядка рассматривается в разделе 4.3.

Если принять одно из них за основание конуса, получим наклонный эллиптический конус с круговым основанием (рис. 2.3.26, б). Ось наклонного конуса не проходит через центр основания. Заметим, что у всех развертывающихся линейчатых поверхностей две смежные образующие либо пересекаются (торс, коническая поверхность), либо параллельны (цилиндрическая поверхность).

Источник: fet.mrsu.ru

Научная электронная библиотека

Пиралова О. Ф., Ведякин Ф. Ф.,

7.2. Линейчатые поверхности

Как уже отмечалось, поверхность называется линейчатой, если она может быть образована перемещением прямой линии. Поверхность, которая не может быть образована движением прямой линии, называется нелинейчатой. Например, конус вращения − линейчатая поверхность, а сфера − нелинейчатая. Через любую точку линейчатой поверхности можно провести, по крайней мере, одну прямую, целиком принадлежащую поверхности. Множество таких прямых представляет собой непрерывный каркас линейчатой поверхности. Линейчатые поверхности разделяются на два вида:

1) развертывающиеся поверхности;

2) неразвертывающиеся, или косые поверхности.

других линейчатых поверхностей.

Примечание. Все нелинейчатые поверхности являются неразвертывающимися. Рассмотрим несколько наиболее характерных разновидностей тех и

Читать еще:  Что такое земля в электрике

Линейчатые поверхности с одной криволинейной направляющей называются торсами, а криволинейная направляющая таких поверхностей − ребром возврата.

Поверхностью с ребром возврата (торсом) называют поверхность, описываемую движением прямой − образующей, касающейся некоторой пространственной кривой − направляющей. Торсы являются поверхностями развертывающимися.

Поверхность называется развертывающейся, если она путем изгибания может быть совмещена с плоскостью без образования складок и разрывов.

.

Рис. 7.9. Поверхность с ребром возврата Рис. 7.10. Коническая поверхность

Очевидно, что все многогранные поверхности являются развертывающимися.

Из кривых поверхностей этим свойством обладают только те линейчатые поверхности, которые имеют ребро возврата.

.

Рис. 7.11. Цилиндрическая поверхность

Существует только три вида линейчатых поверхностей, имеющих ребро возврата: торсы, конические и цилиндрические (Рис. 7.9 − 7.11) .

Необходимо отметить, что у всех развертывающихся линейчатых поверхностей две смежные образующие либо пересекаются (торс, коническая поверхность), либо параллельны (цилиндрическая поверхность).

Источник: monographies.ru

Линейчатые развертываемые поверхности вращения

Задание поверхности на комплексном чертеже

Определение поверхности

В начертательной геометрии фигуры задаются графически, поэтому целесообразно дать следующее определение поверхности.

Поверхность– это множество всех последовательных положений линии, движущейся по определенному закону.Линия может быть прямой, либо кривой. Непрерывно перемещающаяся линия называется образующей(рис. 7.1); неподвижные линии, по которым движется образующая при образовании поверхности, – направляющими(рис. 7.1). Направляющих может быть одна и более линий.

Рис. 7.1. Элементы поверхностей: l – образующая; m – направляющая

Для построения проекций поверхности или тела, ограниченного поверхностью, обычно не строят всех её точек, а определяют только очерк поверхности (рис. 7.2).

б
а

Рис. 7.2. Построение проекций поверхностей: а – цилиндрической; б – сферы

Очерком поверхности называют линию, ограничивающую проекцию фигуры на плоскости проекций. Проекции любой точки поверхности лежат внутри очерка (в частном случае на очерке). Если линией контура поверхности служит образующая поверхности, то её называют контурной образующей, а её проекцию – очерковой образующей.

При построении эпюра поверхности направление проецирования совпадает с направлением взгляда наблюдателя, поэтому контурная линия является границей видимости поверхности: та её часть, которая расположена перед линией контура, – видима, остальная – невидима.

Очерковая линия разделяет проекцию на видимую и невидимую части. Проекции точек поверхности, расположенные на очерках, будем называть точками перемены (границы) видимости. Невидимые точки принято обозначать в скобках.

7.3. Классификация поверхностей

Многообразие форм поверхностей создает большие трудности при их изучении. Для того чтобы обеспечить процесс изучения поверхностей, необходимо их систематизировать. К сожалению, невозможно разработать универсальную классификацию поверхностей. Внутри каждого способа образования поверхностей существует своя база для систематизации, например, в кинематическом способе образования поверхностей в основе систематизации лежит вид образующей и закон ее перемещения. Одна из возможных классификаций представлена на рис. 7.3.

Рис. 7.3. Классификация поверхностей

Линейчатые поверхности.Поверхности, которые образуются при некотором закономерном движении прямой в пространстве, называются линейчатыми.Линейчатые поверхностив общем случае однозначно определяются тремя направляющими линиями m, n, f.

Линейчатые поверхности делятся на развёртывающиеся и неразвёртывающиеся. Развертывающиеся поверхности могут без деформации (складок и разрывов) совмещаться с плоскостью. К наиболее распространенным развёртывающимся поверхностям относятся: цилиндрические, конические, с ребром возврата (торса), призматические, пирамидальные.

Поверхности вращения общего вида.Поверхности вращения общего вида –это поверхности, образованные произвольной линией (образующей l) при ее вращении вокруг неподвижной оси (оси поверхности i).

При задании поверхности вращения на комплексном чертеже ось вращения i располагают перпендикулярно одной из плоскостей проекций. Элементы поверхности: m – главный меридиан, 1 – горло, 2 – экватор
(рис. 7.4, а). В этом случае все параллели поверхности, горло 1 и экватор 2 проецируются на П1 в истинную величину, а на П2 – в отрезки прямых, перпендикулярные i2 – проекции оси i. Для задания поверхности вращения общего вида на комплексном чертеже строят проекции главного меридиана m1 и m2, проводят проекции горла, экватора и двух параллелей (7.5, б).

а

б

Рис. 7.4. Поверхность вращения общего вида: а – наглядное изображение; б – комплексный чертеж; 1 – горло; 2 – экватор; m – главный меридиан

Свойства поверхностей вращения.

1. Вращаясь вокруг своей оси, поверхность может сдвигаться без деформации вдоль самой себя.

2. Если меридиан поверхности вращения проходит через две точки поверхности, то он является кратчайшей линией между этими точками и все меридианы равны между собой.

3. Каждая из параллелей поверхности вращения пересекает меридиан под прямым углом, т. е. параллели и меридианы образуют прямоугольную сеть на поверхности вращения.

4. Поверхность вращения можно задать кривой, если эта кривая пересекает все ходы точек образующей линии.

Линейчатые развертываемые поверхности вращения.Линейчатые развертываемые поверхности вращения – это поверхности, образованные вращением прямолинейной образующей l вокруг неподвижной оси поверхности I по кривой или ломаной направляющей m, развертки которых можно совместить с плоскостью без разрывов и складок.

К наиболее распространенным линейчатым развертываемым поверхностям вращения относятся: цилиндр вращения, конус вращения, однополостный гиперболоид (табл. 7.1).

Наименование поверхности Комплексный чертёж 3D модель
Конус вращения
Цилиндр вращения
Гиперболоид однополостный

Цилиндрическая поверхность. Поверхность, образованная параллельным перемещением прямолинейной образующей l по кривой направляющей m, называется цилиндрической.

Конус вращения. Поверхность, образованная движением прямолинейной образующей l, проходящей через неподвижную точку – вершину О по криволинейной направляющей m, называется конической.

Однополостный гиперболоид вращения. Поверхность, образованная вращением прямолинейной образующей l по криволинейной направляющей m вокруг оси i, при этом образующая l и ось i – скрещиваются, называется однополостным гиперболоидом вращения.

Нелинейчатые неразвертываемые поверхности вращения.Нелинейчатые неразвертываемые поверхности вращения это поверхности, образованные вращением криволинейной образующей l вокруг неподвижной оси поверхности i по криволинейной направляющей m, развертки которых невозможно совместить с плоскостью без разрывов и складок. К распространенным нелинейчатым неразвертываемым поверхностям вращения относятся тор и сфера.

Тор. Поверхность, образованная вращением окружности (образующей l) вокруг оси i, не проходящей через ее центр, но расположенной в плоскости окружности. В зависимости от соотношения значений радиуса образующей l окружности R и расстояния r от центра окружности до оси вращения i возможны три разновидности поверхностей (табл. 7.2).

Читать еще:  Чем сварить чугунную деталь

Открытый тор. Если R

Дата добавления: 2014-10-23 ; Просмотров: 2835 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник: studopedia.su

Кривые поверхности

Общие сведения о кривых поверхностях и их изображении на чертежах

В начертательной геометрии поверхность рассматривают как множество последовательных положений движущейся линии или другой поверхности в пространстве. Линию, перемещающуюся в пространстве и образующую поверхность, называют образующей. Образующие могут быть прямыми и кривыми. Кривые образующие могут быть постоянными и переменными, например закономерно изменяющимися.

Одна и та же поверхность в ряде случаев может рассматриваться как образованная движениями различных образующих. Например, круговой цилиндр может быть образован: во-первых, вращением прямой относительно неподвижной оси, параллельной образующей; во-вторых, движением окружности, центр которой перемещается по прямой, перпендикулярной плоскости окружности; в-третьих, прямолинейным движением сферы.

При изображении поверхности на чертеже показывают лишь некоторые из множества возможных положений образующей. На рис. 8.1 показана поверхность образующей АВ. При своем движении образующая остается параллельной направлению MN и одновременно пересекает некоторую кривую линию CDE. Таким образом, движение образующей AB направляется в пространстве линией CDE.

Линию или линии, пересечение с которыми является обязательным условием движения образующей при образовании поверхности, называют направляющей или направляющими.

На рис. 8.2 показана поверхность, образованная движением прямой AB по двум направляющим – прямой O1

Из различных форм образующих, направляющих, а также закономерностей образования конкретной поверхности выбирают те, которые являются наиболее простыми и удобными для изображения на чертеже поверхности и решения задач, связанных с нею.

Иногда для задания поверхности используют понятие «определитель поверхности», под которым подразумевают совокупность независимых условий, однозначно задающих поверхность. В числе условий, входящих в состав определителя, различают геометрическую часть (точки, линии, поверхности) и закон (алгоритм) образования поверхности геометрической частью определителя.

Рассмотрим краткую классификацию кривых поверхностей, принятую в начертательной геометрии.

Линейчатые развертываемые поверхности. Поверхность, которая может быть образована прямой линией, называют линейчатой поверхностью. Если линейчатая поверхность может быть развернута так, что всеми своими точками она совместится с плоскостью без каких-либо повреждений поверхности (разрывов или складок), то ее называют развертываемой. К развертываемым поверхностям относятся только такие линейчатые поверхности, у которых смежные прямолинейные образующие параллельны или пересекаются между собой, или являются касательными к некоторой пространственной кривой. Все остальные линейчатые и все нелинейчатые поверхности относятся к неразвертываемым поверхностям.

Развертываемые поверхности – цилиндрические, конические, с ребром возврата или торсовые. У цилиндрической поверхности образующие всегда параллельны, направляющая – одна кривая линия. Изображение на чертеже ранее показанной в пространстве цилиндрической поверхности (см. рис. 8.1) представлено на рис. 8.3. Частные случаи – прямой круговой цилиндр, наклонный круговой цилиндр (см. рис. 9.17, направляющая-окружность, плоскость которой расположена под углом к оси цилиндра и с центром на его оси). У конических поверхностей все прямолинейные образующие имеют общую неподвижную точку – вершину, направляющая – одна любая кривая линия. Пример изображения конической

поверхности на чертеже – рис. 8.4, проекции вершины G», G’, направляющей C’D»E», C’D’E’. Частные случаи – прямой круговой конус, наклонный круговой конус – см. рис. 10.10, справа. У поверхностей с ребром возврата или торсовых прямолинейные образующие касательны к одной криволинейной направляющей.

Линейчатые неразвертываемые поверхности: цилиндроид, коноид, гиперболический параболоид (косая плоскость). Поверхность, называемая цилиндроидом, образуется при перемещении прямой линии, во всех своих положениях сохраняющей параллельность некоторой заданной плоскости («плоскости параллелизма») и пересекающей две кривые линии (две направляющие). Поверхность, называемая коноидом, образуется при перемещении прямой линии, во всех своих положениях сохраняющей параллельность некоторой плоскости («плоскости параллелизма») и пересекающей две направляющие, одна из которых кривая, а другая – прямая линия (рис. 8.5, см. также рис. 8.2). Плоскостью параллелизма на рис. 8.5 является плоскость π1;

направляющие – кривая с проекциями E»G»F», E’G’F’, прямая с проекциями О»,0″, О’,0. В частном случае, если криволинейная направляющая – цилиндрическая винтовая линия с осью, совпадающей с прямолинейной направляющей, образуемая поверхность – винтовой коноид, рассматриваемый ниже. Чертеж гиперболического параболоида, называемого косой плоскостью, приведен на рис. 8.6. Образование этой поверхности можно рассматривать как результат перемещения прямолинейной образующей по двум направляющим – скрещивающимся прямым параллельно некоторой плоскости параллелизма. На рис. 8.6 плоскость параллелизма – плоскость проекции яь направляющие – прямые с проекциями M»N», M’N’ и F»G», F’G’.

Нелинейчатые поверхности. Их подразделяют на поверхности с постоянной образующей и с переменной образующей.

Поверхности с постоянной образующей в свою очередь подразделяют на поверхности вращения с криволинейной образующей, например сфера, тор, эллипсоид вращения и др., и на циклические поверхности, например поверхности изогнутых труб постоянного сечения, пружин.

Поверхности с переменной образующей подразделяют на поверхности второго порядка, циклические с переменной образующей, каркасные. Чертеж поверхности второго порядка – эллипсоида приведен на рис. 8.7. Образующая эллипсоида – деформирующийся эллипс. Две направляющие – два пересекающихся эллипса, плоскости которых ортогональны и одна ось – общая. Образующая пересекает направляющие в крайних точках своих осей.

Плоскость образующего эллипса при перемещении остается параллельной плоскости, образованной двумя пересекающимися осями направляющих эллипсов.

Циклические поверхности с переменной образующей имеют образующую – окружность переменного радиуса, направляющую – кривую, по которой перемещается центр образующей, плоскость образующей перпендикулярна направляющей. Каркасную поверхность задают не движущейся образующей, а некоторым количеством линий на поверхности.

Обычно такие линии – плоские кривые,

плоскости которых параллельны между собой. Две группы таких линий пересекают друг друга и образуют линейчатый каркас поверхности. Точки пересечения линий образуют точечный каркас поверхности. Точечный каркас поверхности может быть задан и координатами точек поверхности. Каркасные поверхности широко используют при конструировании корпусов судов, самолетов, автомобилей, баллонов электронно-лучевых трубок.

Из указанных поверхностей рассмотрим более подробно винтовую.

Источник: studme.org

Ссылка на основную публикацию
Adblock
detector