Компаратор схема на логических элементах

Компараторы

Компаратором (устройством сравнения) называется КЦУ, которое предназначено для сравнения двух двоичных чисел. УГО компаратора представлено на рисунке 31.

Рисунок 31 – Условное графическое обозначение четырехразрядного компаратора двоичных чисел

Компаратор имеет две группы входов. На одну из них поступают разряды числа А, на другую группу – разряды числа В.

Появление одиночного сигнала на одном из трех выходов компаратора фиксирует результат сравнения. Эти соотношения используются как логические условия (признаки) в микропрограммах, в устройствах автоматического контроля и диагностики и т.д.

В таблице 7 показана связь между сигналами на выходах и входах компаратора при сравнении одноразрядных чисел ai и bi, которые могут быть равны единице или нулю. На соответствующем выходе появляется единичный сигнал, когда в должном соотношении находятся коды на входах. Например, если ai = 1, bi = 1 (числа одинаковы), то функция, характеризующая равенство чисел, FA=B = 1, а функции, характеризующие их неравенство, FA B = 0. Аналогично заполняются другие строки таблицы.

Таблица 7 – Таблица истинности одноразрядного компаратора

Логические аргументы Логические функции
ai bi FA B

По данным таблицы 7 запишем логические функции для одноразрядного компаратора в СДНФ:

(18)

Если значения ai и bi таковы, что правые части функций принимают единичные значения, то соотношения, указанные в индексах левых частей, выполняются. Если правые части функций принимают нулевые значения, то соотношения между ai и bi противоположны указанным.

Логическая схема одноразрядного компаратора, реализующая функции (18), приведена на рисунке 32.

Рисунок 32 – Логическая схема одноразрядного компаратора

Остановимся подробнее на равенстве чисел. Заметим, что функция FA=B – функция «Равнозначность». По смыслу она противоположна функции FAB «Неравнозначность»:

, т.е. (19)

Поэтому проверку равенства одноименных разрядов двух чисел можно осуществить, используя логический элемент «Исключающее ИЛИ», дополненный инвертором (рисунок 33).

Рисунок 33 – Логическая схема для проверки равенства двух многоразрядных двоичных чисел

Когда цифры в одноименных разрядах чисел А и В одинаковы, то на выходах всех логических элементов «Исключающее ИЛИ» нулевые сигналы и функция FA=B = 1. Если хотя бы в одной паре разрядов находятся разные цифры, то на выходе соответствующего логического элемента «Исключающее ИЛИ» единичный сигнал и функция FA=B = 0, что указывает на неравенство чисел А и В.

Рассмотрим теперь неравенство чисел, используя выражение (18). Пусть А > В. Выявление такого неравенства начинается со старших разрядов; если они равны, то сравнивается следующая пара одноименных разрядов и т. д. Например, в случае трехразрядных чисел могут быть следующие варианты:

– неравенство цифр в старших разрядах (a2>b2), что в соответствии с (18) представляется выражением . При этом неравенство чисел А > В описывается тем же выражением;

– равенство цифр в старших разрядах (a2=b2), что представляется выражением и неравенство цифр в средних разрядах (a1>b1), что описывается выражением . При этом неравенство чисел А > В представляется конъюнкцией двух приведенных выражений ;

– равенство цифр в старших и средних разрядах (a2=b2, a1=b1), что описывается выражениями и , и неравенство цифр в младших разрядах (a>b), что описывается выражением . При этом неравенство чисел А > В представляется конъюнкциями трех предыдущих выражений .

Поскольку возможен любой из трех вариантов, то выражение, учитывающее все варианты, запишется в виде дизъюнкций приведенных конъюнкций:

(20)

Если на выходе схемы (рисунок 34), элементы которой реализуют выражение (20) устанавливается единичный сигнал, то число А > B.

Рисунок 34 – Логическая схема для проверки неравенства двух трехразрядных двоичных чисел

На рисунке 35 предыдущая схема дополнена логическим элементом «Исключающее ИЛИ — НЕ» (на входы которого подаются разряды a, b), конъюнктором (на выходе которого формируется функция FA=B) и элементом ИЛИ – НЕ (на выходе которого формируется функция FA B = 0 и FA=B = 0, то на выходе элемента ИЛИ – НЕ единичный сигнал (FA

Рисунок 35 – Логическая схема трехразрядного компаратора

По аналогичным схемам (см. рисунок 35) строятся компараторы для сравнения двоичных чисел с большей разрядностью.

На рисунке 36 показана схема наращивания разрядности компараторов.

Рисунок 36 – Схема наращивания разрядности компараторов

Каждый компаратор на рисунке 36 предназначен для сравнения четырехразрядных слов и имеет выходы A B. Аналогичные входы служат для наращивания разрядности компараторов. Результат сравнения на выходах первого компаратора второй компаратор воспринимает как единую пару младших разрядов, с учетом которой формируется окончательный результат сравнения. Подобным образом можно осуществлять дальнейшее наращивание разрядности. Указанные потенциалы на входах компаратора младших разрядов обеспечивают правильное функционирование многокаскадного компаратора на микросхемах.

1 Калабеков, Б. А. Цифровые устройства и микропроцессорные системы : учеб. для техникумов связи / Б. А. Калабеков. – М. : Горячая линия – Телеком, 2002. – 336 с.

2 Калабеков, Б. А. Цифровые устройства и микропроцессорные системы : учеб. для техникумов связи / Б. А. Калабеков, И. А. Мамзелев. – М. : Радио и связь, 1987. – 400 с.

3 Лысиков, Б. Г. Цифровая и вычислительная техника : учеб. для техникумов связи / Б. Г. Лысиков. – Мн. : УП Экоперспектива, 2002. – 264 с.

4 Угрюмов, Е. П. Цифровая схемотехника : учеб. пособие для вузов / Е. П. Угрюмов. – Спб. : БХВ-Петербург, 2002. – 582 с.

5 Цифровые и микропроцессорные устройства : лабораторный практикум для студентов специальностей 2-45 01 03 – Сети телекоммуникаций, 2‑45 01 02 – Системы радиосвязи, радиовещания и телевидения. В 4 ч. / сост. В. И. Богородов. – Минск : ВГКС, 2009. – Ч. 1 – 84 с.; Ч. 2 – 65 с.

6 Цифровые интегральные микросхемы : справочник, 2-е изд., перераб. и доп. / М. И. Богданович [и др.]. – Мн. : Беларусь, Полымя, 1996. – 605 с.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8408 — | 7321 — или читать все.

188.64.173.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник: studopedia.ru

Пороговые устройства на элементах цифровой логики

Пороговые устройства, называемые также компараторами, предназначены для преобразования аналогового сигнала в цифровую информацию. Например, на выходе порогового элемента формируется сигнал какого-либо логического уровня, если входной аналоговый сигнал по своему значению меньше определенного напряжения, если же он больше, то на выходе порогового устройства формируется сигнал противоположного логического уровня.

Кроме регистрации или сигнализации о превышении (или снижении) напряжения контролируемого сигнала, пороговые устройства применяют в аналого-цифровых преобразователях, генераторах импульсов различной формы.

В составе некоторых серий аналоговых микросхем есть компараторы, пригодные для совместной работы с цифровыми микросхемами, но они не всегда доступны. Многие из них требуют двухполярного источника питания, что усложняет конструкцию. Поэтому в ряде случаев оказывается целесообразным использовать в качестве пороговых устройств элементы, что обеспечивает полное согласование логических уровней без каких-либо специальных мер.

В принципе, сам элемент представляет собой пороговое устройство, в чем легко убедиться, взглянув на рис. 18, на котором показаны передаточные характеристики идеального порогового устройства 1 и элемента КМОП 2. У идеального порогового устройства прямоугольная характеристика, элемент же имеет характеристику с некоторым наклоном, поэтому вблизи порогового напряжения возникает зона неопределенности, которая в итоге и определяет чувствительность порогового устройства. В тех случаях, когда не требуется высокой точности, в качестве порогового устройства можно использовать логический элемент.

Для повышения точности пороговых устройств на основе элементов применяют специальные схемные решения. Схема простого порогового устройства на двух элементах ТТЛ приведена на рис. 19,а. Благодаря наличию положительной обратной связи (ПОС) по постоянному току через резистор R2 передаточная характеристика становится прямоугольной (рис. 19,6). Устройство работает следующим образом. При входном сигнале меньше порогового на выходе будет напряжение низкого уровня. С увеличением входного напряжения до U2 на выходе элемента DD1.2 напряжение также начнет увеличиваться. Это напряжение через резистор R2 поступит на вход элемента DD1.1, что приведет к еще большему увеличению напряжения на выходе элемента DD1.2 и т. д. Таким образом, пороговое устройство скачком переходит в устойчивое состояние с высоким уровнем напряжения на выходе. Дальнейшее увеличение входного напряжения состояние порогового устройства не изменяет.

Рис. 18. Характеристики порогового устройства и элемента КМОП

При уменьшении входного напряжения до U] пороговое устройство скачком переходит в устойчивое состояние с низким уровнем напряжения на выходе. Разность напряжений U2—U1 называют шириной петли гистерезиса, она зависит от соотношения номиналов резисторов R1 и R2. От этих же резисторов зависит и чувствительность. При увеличении сопротивления резистора R2 и уменьшении R1 чувствительность повышается, а ширина петли гистерезиса уменьшается. Однако элементы ТТЛ работают с входными токами, поэтому сопротивление этих резисторов должны лежать в определенных пределах. Так, для микросхем серий К133 и К155 сопротивление резистора R1 может быть в пределах 0,1 . 2 кОм, a R2 — в пределах 2. 10 кОм.

Такое пороговое устройство не имеет на входе разделительного конденсатора, поэтому нижняя граница его частотной характеристики простирается вплоть до постоянного напряжения, а вот верхняя, из-за наличия к цепи сигнала резистора R1, ограничена частотой 8. 10 МГц.

Если необходимо пороговое устройство, реагирующее только на переменную составляющую сигнала, его следует несколько изменить в соответствии с рис. 20. Сопротивления резисторов R2 и R3 должны быть примерно равны, емкость конденсатора С1 определяет нижнюю частотную границу рабочего диапазона.

Большей граничной частотой обладает пороговое устройство на логических расширителях по ИЛИ микросхемы К155ЛД1 (рис. 21), по схемному построению аналогичное триггеру Шмитта на транзисторах. Порог срабатывания зависит от соотношения номиналов резисторов R1 и R3. Ширина петли гистерезиса составляет около 0,1 В, а порог срабатывания можно регулировать от 0,02 до і В. Номинал резистора SR1! должен быть в пределах 0,(1 . 1 кОм, a R2 — 22.

Рис. 19. Пороговое устройство на элементе ТТЛ

Рис. 20. Принципиальная схема порогового устройства на элементе ТТЛ

Рис. 21. Принципиальная схема порогового устройства на микросхеме К155ЛД1

Недостатком такого устройства является несколько повышенное, чем обычно, напряжение низкого логического уровня, за счет падения напряжения на резисторе R3.

Выполнить пороговый элемент можно и на элементах КМОП (рис. 22). Его отличительной особенностью является экономичность, а недостатком — низкая чувствительность. Поскольку элементы КМОП работают без входных токов и обладают невысокой нагрузочной способностью по току, то сопротивления резисторов R1 и R2 обычіно выбирают большими — десятки и сотни килорм. Для повышения чувствительности устройства на его вход следует подавать начальное смешение от источника питания через делитель R3R4.

При .контроле сигнала, уровень которого может изменяться в больших пределах, например музыкального сигнала, возможна ситуация, когда сигнал на очень короткое время превысит пороговое значение. Хотя устройство и сработает, но этого времени может не хватить, например, для включения индикатора. В таком случае будет полезным пороговое устройство с «памятью» (,рис. 23), которое на определенное время сохранит информацию о том, что сигнал превысил пороговое напряжение или был меньше него. От предыдущего устройства оно отличается тем, что в цепь ПОС между выходом элемента DD1.2 и одним из входов элемента DD1.1 включен конденсатор С2. Как только на выходе элемента DD1.2 появляется напряжение высокого уровня, оно через конденсатор С2 поступает на вход элемента DDL1. В таком состоянии устройство остается до тех пор, пока не зарядится этот конденсатор, даже в том случае, если уровень входного сигнала станет ниже порогового значения. Время, в течение которого информация о превышении сигнала хранится в устройстве, определяется постоянной времени цепи R1C2.

В каких же конструкциях можно применить пороговые устройства? В приборах, сигнализирующих об изменении напряжения, сигнала, в реле времени ^таймеры), различных индикаторах, генераторах и многих других. Цифровые микросхемы широко используют для генерирования сигналов с разными параметрами. Благодаря большому коэффициенту усиления н хорошим частотным свойствам на базе их логических элементов удается реализовать генераторы с частотой от долей герца до десятков и сотен мегагерц, к тому же самой различной формы.

Рис. 22. Принципиальная схема порогового устройства на элементе КМОП

Рис. 23. Принципиальная схема порогового устройства с «памятью»

Литература: И. А. Нечаев, Массовая Радио Библиотека (МРБ), Выпуск 1172, 1992 год.

Источник: radiostorage.net

Компараторы и триггеры Шмитта на ОУ

Всем доброго времени суток. В предыдущих статьях я рассказывал о применении операционных усилителей в линейных схемах, где ОУ охвачен отрицательной обратной связью, которая позволяет строить усилители, параметры которых будут в основном определяться элементами обвязки ОУ. Данная статья расскажет о применении ОУ без обратной связи или даже с положительной обратной связью (ПОС).

Работа операционного усилителя без обратной связи

Как известно напряжение на выходе ОУ UВЫХ определяется произведением входного дифференциального напряжения UД (разность напряжений между входными выводами) на коэффициент усиления ОУ по напряжению КU

Операционные усилители имеют очень большой коэффициент усиления ОУ по напряжению КU = 10 5 … 10 6 , а выходное напряжение не может выйти за пределы напряжения питания (обычно несколько меньше). Поэтому, для того чтобы ОУ работал в качестве усилителя напряжения максимальное входное дифференциальное напряжение не должно превышать нескольких десятков мкВ (при UПИТ = 15 В, КU = 10 5 , UД ≈ 150 мкВ). С учётом вышесказанного можно сделать вывод, что без применения отрицательной обратной связи, которая снижает усиление ОУ в схеме, применение ОУ бесполезно, так как при входных напряжениях в несколько милливольт ОУ войдёт в насыщение с выходным напряжением равным напряжению питания.

Но существуют схемы, в которых операционные усилители применяются без обратной отрицательной связи, а в некоторых случаях специально вводят положительную обратную связь (ПОС) для увеличения коэффициента усиления схем. Одним из видов таких схем являются пороговые устройства, в состав которых входят различные компараторы, триггеры Шмитта, детекторы уровней напряжения.

Принцип работы компаратора

Простейшим пороговым устройством является компаратор. Он сравнивает напряжение, которое поступает на один из его входов, с опорным напряжением, которое присутствует на другом его входе. Простейший компаратор получается из операционного усилителя, в котором отсутствует отрицательная обратная связь. Рассмотрим принцип работы компаратора напряжений на основе ОУ, схема которого изображена ниже


Использование ОУ в качестве компаратора и графики входного и выходного напряжений.

В основе компаратора лежит ОУ на инвертирующий вход, которого поступает входное напряжение UBX, а неинвертирующий вход соединён с источником опорного напряжения UОП. Принцип работы компаратора изображённого на рисунке заключается в следующем: когда входное напряжение UBX больше опорного UОП, то выходное напряжение принимает значение отрицательного напряжения насыщения –UНАС и остаётся неизменным пока входное напряжение UBX не уменьшиться ниже опорного напряжения UОП, в этом случае на выходе будет напряжение положительного насыщения +UНАС.

На рисунке изображен компаратор с инвертирующим выходным сигналом по отношению к входному сигналу. Для того, чтобы не происходило инверсии на выходе необходимо поменять подключение выводов ОУ, то есть входной сигнал должен поступать на неивертирующий вход, а опорное напряжение на инвертирующий вывод. Тогда при превышении опорного напряжения на выходе ОУ будет положительное напряжение насыщения, а при входном напряжении меньше, чем опорное напряжение на выходе будет присутствовать отрицательное напряжение насыщения ОУ.

Основные схемы компаратора

Существует много разновидностей компараторов, но в из основе лежат две основные схемы: одновходовая и двухвходовая. Одновходовая схема позволяет сравнивать разнополярные напряжения по модулю, то есть по абсолютной величине. Двухвходовый же компаратор сравнивает два напряжения с учётом знака. Расссмотрим обе схемы подробнее.


Схема одновходового компаратора.

На рисунке выше изображён одновоходовый компаратор, позволяющий сравнивать два разнополярных напряжения по абсолютному значению (по модулю). В его основе лежит инвертирующий сумматор, в котором отсутствует отрицательная обратная связь, поэтому ослабления коэффициент усиления операционного усилителя не происходит. В результате чего на инвертирующем входе ОУ происходит суммирование входного напряжения UBX и опорного напряжения UОП приведённого к инвертирующему входу UПРИВ, а результат суммирования усиливается ОУ и выводится на его выход. Для того чтобы происходило сравнение необходимо фактически производить операцию вычитания, то есть напряжения на входах UBX и UПРИВ должны иметь разную полярность.

Приведённое напряжение UПРИВ можно вычислить по следующему выражению

Резистор R3 предназначен для компенсации входного тока смещения и должен быть равен величине параллельно соединённых резисторов R1 и R2

Основным недостатком данной схемы является необходимость использования стабилизированного отрицательного напряжения, что приводит к усложнению схемы. Поэтому одновходовый компаратор не получил широкого распространения.

Наибольшее распространение получила схема двухвходового компаратора, в котором отсутствует необходимость в отрицательном напряжении. Схема данного компаратора приведена ниже


Схема двухвходового компаратора.

В основе двухвходового компаратора лежит дифференциальный усилитель, в котором отсутствует отрицательная обратная связь, поэтому разность между входным напряжением UBX и UОП опорным напряжение усиливается ОУ, не имеющего снижения коэффициента усиления из-за отсутствуя ООС, и выделяется на выходе ОУ. В данной схеме входные резисторы R1 и R2 имеют одинаковое значение.

Компараторы применяются в широком спектре схем:

  1. Триггеры Шмитта и в схемах формирования сигнала, преобразующих сигнал произвольной формы в прямоугольный или импульсный сигнал.
  2. Детекторы уровня – схемы, в которых происходит индицирование момента достижения входным сигналом заданного уровня опорного напряжения.
  3. Генераторы импульсных сигналов, например, треугольной или прямоугольной формы.

При использовании компаратора в схемах, где входное напряжение медленно меняется и амплитуда сигнала очень близка к опорному напряжению, то шумы на входном выводе могут вызвать ложные срабатывания компаратора и на его выходе могут появиться дополнительные импульсы, что продемонстрировано на рисунке ниже


Появление ложных импульсов на выходе компаратора.

Для устранения таких ложных срабатываний компаратора, в его схему вводится некоторый гистерезис, путём добавления положительной обратной связи (ПОС) к операционному усилителю.

Триггер Шмитта

Как сказано выше для устранения ложных срабатываний компаратора, известных, как «дребезг контактов» необходимо использовать схему компаратора с петлёй гистерезиса, которая получила название триггера Шмитта.

В одной из статей я рассказывал о триггере Шмитта выполненном на транзисторах. Он характеризуется тем, что в отличие от компаратора имеет так называемую петлю гистерезиса. То есть компаратор переключается из высокого уровня напряжения в низкий при одной и той же величине входного напряжения, а триггер Шмитта имеет два уровня (порога) переключения. Данное различие иллюстрирует изображение ниже


Изменение входного и выходного напряжения компаратора (справа) и триггера Шмитта (слева).

Уровни напряжения, при которых происходит переключение триггера Шмитта называются верхним уровнем (порогом) срабатывания триггера UВП и нижним уровнем (порогом) срабатывания триггера UНП.

Для реализации триггера Шмитта применяют ОУ охваченные положительной обратной связью (ПОС), которая реализуется подачей на неинвертирующий вход части выходного напряжения. Схема триггера Шмитта изображена ниже


Триггер Шмитта на операционном усилителе.

Работа триггера Шмитта во многом похожа на работу компаратора, только в отличие от него в триггере опорное напряжение не постоянно, а зависит от разности выходного и опорного напряжений, то есть имеет различные значения.

Рассмотрим инвертирующий триггер Шмитта. В исходном входное напряжение не превышает верхнего уровня срабатывания триггера UВП, поэтому на выходе присутствует положительное напряжение насыщения UНАС+ (примерно на 1 – 2 В ниже положительного напряжения питания UПИТ+). Когда входное напряжение достигает верхнего порога переключения UВП выходное напряжение резко упадёт до уровня отрицательного напряжения насыщения UНАС-(примерно на 1 – 2 В выше отрицательного напряжения питания UПИТ-). Верхний уровень напряжения переключения триггера Шмитта определяется следующим выражением

Далее триггер остаётся в устойчивом состоянии до тех пор, пока входное напряжение не станет меньше нижнего порога срабатывания UНП, а на выходе триггера установится положительное напряжение насыщения UНАС+. Нижний порог срабатывания триггера определяется следующим выражением

Таким образом, петля гистерезиса будет зависеть от соотношения резисторов R2 и R3, а ширина петли гистерезиса UГИС определяется разностью верхнего порога срабатывания UВП и нижнего порога срабатывания UНП

Триггеры Шмитта на ОУ являются основой для построения различных генераторов импульсов, поэтому важнейшими характеристиками ОУ работающих в импульсных схемах является быстродействие, которое зависит от задержек срабатывания и времени нарастания выходного напряжения.

Ограничение уровня выходного напряжения компаратора и триггера Шмитта

Применение положительной обратной связи (ПОС) в компараторах и триггерах Шмитта ускоряет переключение схем, но в связи с тем, что выходное напряжение UВЫХ изменяется от UНАС+ до UНАС-, то время переключения составляет довольно значительную величину (от долей до единиц микросекунд).

Кроме того существует проблема несовместимостей уровней выходного напряжения, к примеру, при напряжении питания ОУ UПИТ = ±15 В, выходное напряжение составит UВЫХ ≈ ±14 В (UНАС+ ≈ +14 В, а UНАС- ≈ -14 В), в то время как уровни ТТЛ микросхем составляют около +5 В или 0 В.

Для устранения вышеописанных проблем применяют так называемую привязку или ограничение уровня выходного напряжения, для этого в компаратор или триггер Шмитта вводят ООС в виде различных схем ограничения. Простейшими ограничительными схемами являются диоды или стабилитроны. Схема триггера Шмитта с ограничение выходного напряжения показана ниже


Триггер Шмитта с ограничением выходного напряжения при помощи стабилитрона в цепи ООС.

Ограничение выходного напряжения в триггере Шмитта работает следующим образом. При поступлении на инвертирующий вход напряжения меньше, чем напряжение опорного уровня (UВХ

Триггер Шмитта с симметричным ограничением выходного напряжения.

В данной схеме реализуется симметричное ограничение выходного напряжения относительно опорного напряжения, причем выходное напряжение выше опорного напряжения ограничивается стабилитроном VD1, а напряжение при этом составит на 0,7 В больше напряжения стабилизации. В случае же выходного напряжения ниже опорного, то выходное напряжение будет на 0,7 В ниже напряжения стабилизации стабилитрона VD2.

При расчёте компараторов и триггеров Шмитта с ограничением выходного напряжения в качестве UНАС+ необходимо использовать UСТ (когда используется один стабилитрон) или UСТVD1 (при двухстороннем ограничении). А вместо UНАС- необходимо использовать значение падения напряжения на диоде примерно 0,7 В (при одном стабилитроне) или UСТVD2 (при двухстороннем ограничении).

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник: www.electronicsblog.ru

Цифровые устройства: триггеры, компараторы и регистры

Цифровые устройства строятся на логических элементах, поэтому подчиняются законам алгебры логики. Основными устройствами цифровой техники, на ряду с логическими устройствами, являются триггеры.

Триггер (англ. trigger – курок) — электронное устройство, обладающее двумя устойчивыми состояниями и способное скачком переходить из одного состояния в другое под воздействием внешнего импульса.

Триггерами или точнее триггерными системами называют большой класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознается по значению выходного напряжения.

Каждому состоянию триггера соответствует определённый (высокий или низкий) уровень выходного напряжения:

1) триггер установлен в единичное состояние – уровень «1».

2) триггер сброшен в нуль — уровень «0» на выходе.

Установившееся состояние сохраняется сколь угодно долго и может быть изменено внешним импульсом или отключением напряжения питания. Т.о. триггер являются элементарным элементом памяти, способным хранить наименьшею единицу информацию (один бит) «0» или «1».

Триггеры могут быть построены на дискретных элементах, логических элементах, на ИМС или входят в состав ИМС.

К основным типам триггеров относят: RS-, D-, T- и JK-триггеры . Кроме того, триггеры делятся на асинхронные и синхронные. В асинхронных триггерах переключение из одного состояния в другое осуществляется непосредственно с поступлением сигнала на информационный вход. В тактируемых триггерах помимо информационных входов имеется вход тактовых импульсов. Их переключение производится только при наличии разрешающего, тактирующего импульса.

RS-триггер имеет минимум два входа: S (set – устанавливать) — производится установка триггера в состояние уровня «1» и R (reset) — сброс триггера в состояние уровня «0». (рис. 1).

При наличии входа С триггер является синхронным – переключение триггера (изменение состояния выхода) может происходить только в момент прихода тактирующего (синхронизирующего) импульса на вход С.

Рисунок 1 — Условно-графическое обозначение RS-триггера и назначение выводов а) асинхронный, б) синхронный

Кроме прямого выхода, триггер может иметь также инверсный выход, сигнал на котором будет противоположным.

В таблице 1 представлены состояния, которые может принимать триггер в процессе работы. В таблице указаны значения входных сигналов S и R в некоторый момент времени tn и состояние триггера (на прямом выходе) в следующий момент времени tn+1 после прихода очередных импульсов. На новое состояние триггера влияет также предыдущее состояние Q n.

Т.о. если необходимо записать в триггер «1» — подаем импульс на вход S, если «0» — подаем импульс на вход R.

Комбинация S = 1, R =1 является запретной комбинацией, т.к. нельзя предугадать какое состояние установится на выходе.

Таблица 1 — Таблица состояний синхронного RS-триггера

Работу триггера также можно рассматривать с помощью временных диаграмм (рис. 2).

Рисунок 2 – Временные диаграммы работы асинхронного RS-триггера

D-триггер (от англ. delay – задержка) имеет один информационный вход и тактируемый (синхронизирующий) вход (рис. 3).

D-триггер запоминает и хранит на выходе Q сигнал, который был на информационном входе D в момент прихода тактового импульса С. Т.о. триггер хранит информацию, записанную при С=1.

Таблица 2 — Таблица состояний D-триггера

Рисунок 3 – D-триггер: а) условно-графическое обозначение, б) временные диаграммы работы

T-триггеры (от англ. tumble – опрокидываться, кувыркаться), называемые также счётными триггерами, имеют один информационный вход Т. Каждый импульс (спад импульса) на Т-входе (счетном входе) переключает триггер в противоположное состояние.

На рисунке 4 показа условно-графическое обозначение (а) Т-триггера и временные диаграммы работы (б).

Рисунок 4 – T-триггер а) условно-графическое обозначение, б) временные диаграммы работы в) таблица состояний

JK-триггер (от англ. jump – скачок, kеер – держать) имеет два информационных входа J и К, и тактируемый вход С. Назначение выводов J и К аналогично назначению выводов R и S, но при этом триггер не имеет запретных комбинаций. Если J = К = 1 он изменяет свое состояние на противоположное (рис. 5).

При соответствующем подключении входов, триггер может выполнять функции RS-, D-, T-триггеров, т.е. является универсальным триггером.

Рисунок 5 – JK -триггер а) условно-графическое обозначение, б) сокращённая таблица состояний

Компаратор (compare – сравнивать) – устройство, сравнивающее два напряжения – входное Uвх с опорным Uоп. Опорное напряжение представляет собой неизменное по величине напряжение положительной или отрицательной полярности, входное напряжение изменяется во времени. Простейшая схема компаратора на операционном усилителе приведена на рисунке 6, а. Если Uвх Uоп на выходе U –нас (рис. 6, б).

Рисунок 6 – Компаратор на ОУ: а) простейшая схема б) характеристика работы

Компаратор с положительной обратной связью называется триггером Шмитта. Если у компаратора переключение с «1» на «0» и обратно происходит при одном и том же напряжении, то у триггера Шмитта — при разных напряжениях. Опорное напряжение создает цепь ПОС R1R2, входной сигнал подается на инвертирующий вход ОУ. На рисунке 7, б, приведена передаточная характеристика триггера Шмитта.

При отрицательном напряжении на инвентирующем входе ОУ Uвых = U+нас. Значит на неинвертирующем входе действует положительное напряжение. При увеличении входного напряжения в момент Uвх > Uнеинв. (Uср – срабатывания) компаратор переключается в состояние Uвых = U-нас. На неинвертирующем входе действует отрицательное напряжение. Соответственно при уменьшении входного напряжения в момент Uвх

Рисунок 7 – Триггер Шмитта на ОУ: а) простейшая схема б) характеристика работы

Пример. На рисунке 8 представлена релейно-контакторная схема управления электродвигателем, позволяющая выполнять его пуск, остановку и реверс.

Рисунок 8 – Релейно-контакторная схема управления электродвигателем

Коммутацию электродвигателя выполняют магнитные пускатели КМ1, КМ2. Свободно замкнутые контакты КМ1, КМ2 предотвращают одновременное срабатывание магнитных пускателей. Свободно разомкнутые контакты КМ1, КМ2 обеспечивают самоблокировку кнопок SB2 и SB3.

Для повышения надёжности работы требуется заменить релейно-контакторные цепи управления и силовые цепей на бесконтактную систему с использованием полупроводниковых приборов и устройств.

На рисунке 9 представлена бесконтактная схема управления электродвигателем.

Силовые контакты магнитных пускателей заменены оптосимистрами: КМ1 – VS1-VS3, КМ2 – VS4-VS6. Применение именно оптосисимистров позволяет обеспечить изоляцию слаботочной цепи управления от мощной силовой цепи

Триггеры обеспечивают самоблокировку кнопок SB2, SB3. Логические элементы И обеспечивают одновременное включение только одного из магнитных пускателей.

При открывании транзистора VT1 ток протекает через светодиоды первой группы оптосимистров VS1-VS3, обеспечивая тем самым протекание тока через обмотки электродвигателя. Открывание транзистора VT2 запитывает вторую группу оптосимистров VS4-VS6, обеспечивая вращение электродвигателя в другую сторону.

Рисунок 9 – Бесконтактная схема управления электродвигателем

Регистр – электронное устройство, предназначенное для кратковременного хранения и преобразования многоразрядных двоичных чисел. Регистр состоит из триггеров, количество которых определяет, сколько разрядов двоичного числа может хранить регистр – разрядность регистра (рис. 10, а). Для организации работы триггеров могут быть использованы логические элементы.

Рисунок 10 – Регистр: а) общее представление, б) условно-графическое обозначение

По способу ввода и вывода информации регистры подразделяются на параллельные и последовательные.

В последовательном регистре триггеры соединены последовательно, т. е. выходы предыдущего триггера передают информацию на входы последующего. Тактовые входы С триггеров соединены параллельно. Такой регистр имеет один информационный вход и вход управления — тактовый вход С.

В параллельном регистре запись в триггеры происходит одновременно, для чего имеется четыре информационных входа.

На рисунке 10, представлено УГО и назначение выводов четырёхразрядного параллельно-последовательного регистра.

Источник: electricalschool.info

Построение компараторов на основе логических элементов

Прежде чем перейти к построению схем компараторов, необходимо вспомнить порядок построения схем, реализующих функции «Равнозначность» и «Неравнозначность» (см. п.2.3.2).

Составим функции «Равнозначность» и «Неравнозначность», которые будем использовать в дальнейшем. Функция «Равнозначность» принимает значение 1, если две ее входные переменные имеют одинаковые логические потенциалы: x1=x2=1 ИЛИ x1=x2=0. Поэтому ее представляют как . Условное изображение элемента «Равнозначность» приведено на рис.3.17,а.

Рис.3.17. Условные изображения элементов «Равнозначность» (а) и «Неравнозначность» (б).

Функция «Неравнозначность» принимает значение 1, если две ее входные переменные имеют разные логические потенциалы: x1=1, x2=0 ИЛИ x1=0, x2=1. Поэтому ее представляют в следующем виде:

,

где значок — символизирует функцию «Неравнозначность».

Функцию «Неравнозначность» иначе называют «Исключающее ИЛИ». Ей присуще интересное свойство: если на один ее вход подать лог.1, то логический потенциал, поданный на второй вход, будет на выходе инвертирован; если же вместо лог.1 на один вход подать лог.0, то функция будет вести себя как повторитель логического потенциала, поданного на другой вход. Это легко проверит это самостоятельно. Условное изображение элемента «Неравнозначность» дано на рис.3.17,б. Вместо приведенного значка (=1) используется значок m2, указывающий на то, что «Исключающее ИЛИ» функционирует по правилам сложения одноразрядных двоичных чисел (сложение по модулю 2): 1+0=1; 0+1=1; 0+0=0; 1+1=0 (при арифметическом сложении единица переносится в соседний более старший разряд).

Пример 3.3.Построить схему сравнения чисел с использованием элементов «Равнозначность» и базисных логических элементов.

Остановимся подробнее на равенстве чисел. Заметим, что функция Fa=b — функция «Равнозначность». По смыслу она противоположна функции «Неравнозначность» («Исключающее ИЛИ»):

, т.е. .

Поэтому проверку равенства одноименных разрядов двух чи­сел можно осуществить, используя элемент «Равнозначность» (рис.4, а).

Два многоразрядных числа A и В равны, если их одноименные разряды содержат одинаковые цифры (а=b И а1=b1 И . И аn-1=bn-1), т.е. функция, характеризующая соотношение чисел, должна быть конъюнкцией функций, характеризующих соотношение цифр в их одноименных разрядах:

.

Когда цифры в одноименных разрядах чисел А и В одинаковы, то на выходах всех элементов «Равнозначность» стоят лог.1 и FA=B=1 (см.рис.3.18). Если хотя бы в одной паре разрядов находятся разные цифры, то на выходе соответствующего элемента «Равнозначность» будет лог.0, и функция FA=B=0, что указывает на неравенство чисел А и В.

Рис.3.18. Схема сравнения двух чисел на базе

Построение схем сравнения (компараторов) для неравенства чисел.Рассмотрим теперь неравенство чисел, используя выражение

; ; . (3.5)

Пусть А>В. Выявление такого неравенства начинается со старших разрядов; если они равны, то сравнивается следующая пара одноименных разрядов и т. д. Так, в случае 3-разрядных чисел могут быть следующие варианты:

1) неравенство цифр в старших разрядах (а2>b2), что в соответствии с (1) представляется выражением . При этом неравенство чисел А>В описывается тем же выражением;

2) равенство цифр в старших разрядах (а2=b2), что представляется выражением ( ) и неравенство цифр в средних разрядах чисел (а1>b1), что описывается выражением . При этом неравенство чисел А>В представляется конъюнкцией двух приведенных выражений .

3) равенство цифр в старших и средних разрядах (а2=b2, а1=b1), что описывается выражениями и , и неравенство цифр в младших разрядах (a>b), что описывается выражением . При этом неравенство чисел А>В представляется конъюнкциями трех предыдущих выражений .

Пример 3.4. Построить схему на основе базисных логических элементов для сравнения многоразрядных чисел.

Поскольку возможен любой из трех вариантов, то выражение, учитывающее все варианты, запишется в виде дизъюнкции приведенных конъюнкций:

. (3.6)

Если на выходе схемы, элементы которой реализуют приведенные конъюнкции и дизъюнкцию из выражения (3.6), устанавливается лог.1, то число А>В. Этому соответствует схема, приведенная на рис.3.19.

Рис. 3.19. Схемы сравнения определения А>В

По аналогичным схемам (см. рис.5б) выполняются компараторы для сравнения чисел с большей разрядностью.

Дата добавления: 2016-11-12 ; просмотров: 1065 | Нарушение авторских прав

Источник: lektsii.org

Читать еще:  Кнопка fa2 4 1bek схема подключения
Ссылка на основную публикацию
Adblock
detector