Коэффициент передачи по току в биполярном транзисторе

Коэффициент передачи по току в биполярном транзисторе

Дата добавления: 2014-11-28 ; просмотров: 7577 ; Нарушение авторских прав

Биполярный транзистор представляет собой трехслойную полупроводниковую структуру n-р-n или р-n-р-типа с двумя р-n-переходами (рис. 4). На каждый р-n-переход может быть подано как прямое, так и обратное напряжения (их называют смещением). В зависимости от их сочетания различают разные режимы работы транзистора.

Рис. 4. n-р-n -транзистор

Рассмотрим кратко работу n-р-n-транзистора. На границе раздела полупроводников с n (электронной)- и р (дырочной)-типами проводимостей за счет диффузии возникает область разноименных объемных зарядов. Она образована ионизированными атомами акцепторной и донорной примесей и обеднена подвижными носителями заряда: электронами и дырками. Поле контактной разности потенциалов, образующееся между зарядами, представляет собой потенциальный барьер, препятствующий диффузионному переходу носителей.

Если на эмиттерный переход подано прямое смещение (как показано на рис. 4), то потенциальный барьер уменьшается, и из эмиттера в базу будут инжектироваться электроны. Концентрация дырок в базе обычно существенно ниже концентрации электронов в эмиттере, и инжекцией дырок в эмиттер можно пренебречь. Поэтому ток эмиттера i3 образуется электронной составляющей потока носителей. Инжектированные из эмиттера электроны являются в базе неосновными носителями зарядов и будут, главным образом за счет диффузии, двигаться сквозь базу по направлению к коллекторному переходу. На коллектор относительно базы подается положительное напряжение, что соответствует обратному смещению коллекторного перехода. Достигшие коллекторного перехода электроны втягиваются его полем в область коллектора и образуют ток коллектора iк. Так как толщина базы мала, а концентрация дырок в ней невелика, то только небольшая часть электронов рекомбинирует (объединяется) с дырками базы; остальные электроны достигают коллекторного перехода. Рекомбинация электронов в базе вызывает соответствующий ток во внешней цепи — ток базы iб.

Между токами эмиттера, базы и коллектора существуют очевидные соотношения:

где α — коэффициент передачи тока эмиттера; он принимает, в зависимости от типа транзистора, значения в интервале от 0,95 до 0,99. Из приведенных соотношений получаем зависимость тока коллектора от тока базы:

(2)

Параметр (3)

называется коэффициентом передачи тока базы и составляет 20÷100. Говорят, что в транзисторе происходит усиление тока базы.

3.3. Вольтамперные характеристики биполярного
транзистора в схеме с общим эмиттером

Рис. 5. Включение транзистора по схеме с общим эмиттером
Рис. 6. Вольтамперные характеристики кремниевого n-р-n-транзистора КТ315. 1- uкэ =0, 2- uкэ = 5В

Свойства биполярного транзистора определяются семействами статических вольтамперных характеристик, которые выражают взаимосвязь его токов и напряжений. Вид этих характеристик зависит от схемы включения транзистора. Наиболее популярной является схема с общим эмиттером (рис. 5). Входными характеристиками является семейство iб = F(uбэ) при uкэ = const (рис. 6, a). Они подобны характеристикам полупроводникового диода. Выходные характеристики представляют семейство iк = F(uкэ) при

При малом uкэ, когда iб >0 (т.е. uбэ ≥ 0,6 В), коллекторный переход (как и эмиттерный) оказывается смещенным в прямом направлении, поэтому не все инжектированные в базу электроны попадают в область коллектора.

Транзистор работает здесь в режиме насыщения, так как увеличение тока базы не приводит к увеличению тока коллектора. Соответствующие этому режиму характеристики сливаются в линию Б. Далее с ростом uкэ ток коллектора iк сначала быстро растет, а затем почти не изменяется.

С увеличением тока базы, который является частью тока эмиттера, ток коллектора также возрастает, и статические характеристики смещаются вверх. Транзистор работает здесь в активном режиме и выступает как регулятор тока. Следует отметить довольно высокую линейность связи коллекторного и базового токов, что проявляется в эквидистантном расположении пологих участков коллекторных характеристик. Наконец, при обратном смещении эмиттерного перехода (т.е. uбэ

Источник: life-prog.ru

Статические характеристики биполярного транзистора для активного режима

Читайте также:

  1. III. 4. 0 Статические испытания буроинъекционных свай.
  2. T Основные характеристики ЭВМ
  3. T Характеристики систем памяти
  4. V. 3 Демографические характеристики популяции
  5. Аварии с выбросом радиоактивных веществ, действия населения в зоне радиоактивного заражения.
  6. Автоматическое регулирование электрического режима
  7. Активный режим работы биполярного транзистора
  8. Акцент на характеристики продукта
  9. Алгоритм расчета режима обжатий
  10. Анализ опасности включения человека в электр.цепь в сетях с изолированной нейтралью при нормальных режимах и в аварийном режиме работы.
  11. Антропометрические характеристики человека
  12. Б30-1.Игрушка в жизни дошкольника, ее воспитательно-образовательное значение. Виды игрушек, их характеристики.

Используя соотношения (4.1) и (4.4), получаем уравнение для тока коллектора в функции от управляющего тока базы:

. (4.5)

Уравнение (4.5) является нелинейным в силу зависимости В=F(Iб, Uкэ) и Iкo.=F(Uкб).

Рис. 4.7. Типичный вид ВАХ биполярного транзистора с ОЭ

Если Uкб = 0, Iко = 0, то из (4.1) и (4.5) получаем значения статических коэффициентов передачи соответственно токов эмиттера и базы:

(4.6)

Зависимость (4.5) чаще всего представляется ВАХ, пример которых приведен на рис. 4.7.

Пунктиром на рис. 4.7 изображено геометрическое место точек, соответствующих равенству

Левее этой кривой находится область насыщенного режима. Активный режим начинается при Iб>0.

При Iб£ 0 имеет место режим отсечки. Минимально возможный ток коллекторов в режиме отсечки достигается при Iб = -Iко, когда согласно (4.5)

В силу нелинейности основной параметр биполярного транзистора В (см. рис. 4.8) существенно зависит от рабочего режима.

Рис. 4.8. Типичные зависимости статического

коэффициента тока базы от режима покоя

70) Опишите способы включения биполярных транзисторов, сравните их между собой.

Существует три основные схемы включения транзисторов. При этом один из электродов транзистора является общей точкой входа и выхода каскада. Надо помнить, что под входом (выходом) понимают точки, между которыми действует входное (выходное) переменное напряжение. Основные схемы включения называются схемами с общим эмиттером (ОЭ),общей базой (ОБ) и общим коллектором (ОК).

Рис. 1 — Схема включения транзистора с общим эмиттером

Усилительные свойства транзистора характеризует один из главных его параметров — статический коэффициент передачи тока базы или статический коэффициент усиления по току β. Поскольку он должен характеризовать только сам транзистор, его определяют в режиме без нагрузки (Rк = 0). Численно он равен:


при Uк-э = const

Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент ki всегда меньше, чем β, т. к. при включении нагрузки ток коллектора уменьшается.

Коэффициент усиления каскада по напряжению ku равен отношению амплитудных или действующих значений выходного и входного переменного напряжения. Входным является переменное напряжение uб-э, а выходным — переменное напряжение на резике, или что то же самое, напряжение коллектор-эмиттер. Напряжение база-эмиттер не превышает десятых долей вольта, а выходное достигает единиц и десятков вольт (при достаточном сопротивлении нагрузки и напряжении источника E2). Отсюда вытекает, что коэффициент усиления каскада по мощности равен сотням, тысячам, а иногда десяткам тысяч.

Важной характеристикой является входное сопротивление Rвх, которое определяется по закону Ома:

и составляет обычно от сотен Ом до единиц килоом. Входное сопротивление транзистора при включении по схеме ОЭ, как видно, получается сравнительно небольшим, что является существенным недостатком. Важно также отметить, что каскад по схеме ОЭ переворачивает фазу напряжения на 180°

К достоинствам схемы ОЭ можно отнести удобство питания ее от одного источника, поскольку на базу и коллектор подаются питающие напряжения одного знака. К недостаткам относят худшие частотные и температурные свойства (например, в сравнении со схемой ОБ). С повышением частоты усиление в схеме ОЭ снижается. К тому же, каскад по схеме ОЭ при усилении вносит значительные искажения.

Схема с общей базой (ОБ). Схема ОБ изображена на рисунке 2.

Рис. 2 — Схема включения транзистора с общей базой

Такая схема включения не дает значительного усиления, но обладает хорошими частотными и температурными свойствами. Применяется она не так часто, как схема ОЭ.

Коэффициент усиления по току схемы ОБ всегда немного меньше единицы:

т. к. ток коллектора всегда лишь немного меньше тока эмиттера.

Статический коэффициент передачи тока для схемы ОБ обозначается α и определяется:


при uк-б = const

Этот коэффициент всегда меньше 1 и чем он ближе к 1, тем лучше транзистор. Коэффициент усиления по напряжению получается таким же, как и в схеме ОЭ. Входное сопротивление схемы ОБ в десятки раз ниже, чем в схеме ОЭ.

Читать еще:  Диод шоттки схема включения

Для схемы ОБ фазовый сдвиг между входным и выходным напряжением отсутствует, то есть фаза напряжения при усилении не переворачивается. Кроме того, при усилении схема ОБ вносит гораздо меньшие искажения, нежели схема ОЭ.

Схема с общим коллектором (ОК). Схема включения с общим коллектором показана на рисунке 3. Такая схема чаще называется эмиттерным повторителем.

Рис. 3 — Схема включения транзистора с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь. Коэффициент усиления по току почти такой же, как и в схеме ОЭ. Коэффициент усиления по напряжению приближается к единице, но всегда меньше ее. В итоге коэффициент усиления по мощности примерно равен ki, т. е. нескольким десяткам.

В схеме ОК фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Входное сопротивление схемы ОК довольно высокое (десятки килоом), а выходное — сравнительно небольшое. Это является немаловажным достоинством схемы.

Другой вариант)

Биполярный транзистор, как управляемый прибор с тремя выводами, может быть описан двумя семействами вольтамперных характеристик (ВАХ): семейством входных ВАХ и семейством выходных ВАХ. Вид их определяется способом включения в схему транзистора, а именно: какой из трех выводов является общим с источниками питания и нагрузки.

Входными ВАХ транзистора являются зависимости входного тока транзистора от входного напряжения при заданном постоянном напряжении на выходе: выходными ВАХ являются зависимости выходного тока от выходного напряжения при заданном постоянном входном токе (или, реже, напряжении): .

Возможны три схемы включения (по числу выводов) биполярного транзистора: с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК). На рис.3.4. представлены эти схемы включения транзистора вместе с полярностью источников питания, причем указанная полярность обеспечивает активный режим. Напряжения обычно отсчитываются относительно общего вывода транзистора.

В справочниках обычно даются семейства ВАХ транзисторов, включенных по схеме ОБ или ОЭ. Однако основные необходимые параметры транзистора можно рассчитать для остальных схем включения, зная их для какой-либо одной.

Отметим, что включение транзистора, например, отличным от ОБ способом, не отражает никаких новых физических эффектов в транзисторе. Кроме того, при расчетах схем с транзисторами на компьютерах с помощью моделирующих программ чаще всего вообще никак не учитывается способ включения. Программы используют математические модели транзистора, являющиеся едиными для всех схем включения. Однако, анализ характеристик и параметров различных схем включения часто облегчает понимание принципа работы схемы и получение некоторых предварительных результатов.

Дата добавления: 2015-04-24 ; Просмотров: 1150 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник: studopedia.su

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Общие вопросы. Устройство, режимы работы транзисторов

Биполярный транзистор — это электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, имеющий три или более выводов. Термин «биполярный» в названии этих транзисторов отражает тот факт, что процессы в них определяются движением носителей заряда обоих знаков (электронов и дырок). В основе работы биполярных транзисторов лежит инжекция через р—п-переход неосновных носителей, заряд которых компенсируется основными носителями.

Рис. 4.1

Принципиальная структура биполярного транзистора включает три полупроводниковых области л—р—л- (рис. 4.1, а) или р—л—р типа (рис. 4.1, б), которые соответственно называются эмиттером, базой и коллектором. Так, р—л-переход между эмиттером и базой (/) называется эмиттерным, а между базой и коллектором (2)коллекторным (см. рис. 4.1, а, б). Помимо структуры транзисторов, на рис. 4.1 (внизу) приведены и их условные обозначения в схемах, где стрелка указывает направление тока при прямом смещении эмиттерного и обратном смещении коллекторного р—л перехода.

Возможны три схемы включения биполярных транзисторов: с общей базой, общим эмиттером и общим коллектором. На рис. 4.2 показаны две из них. Направления токов и полярности напряжений соответствуют нормальным условиям работы (активному режиму) т. е. прямому смещению эмиттерного р—л-пе- рехода и обратному смещению коллекторного перехода. Кроме этого режима возможна работа транзистора еще в трех режи-

Рис. 4.2

мах: отсечки, двойной инжекции или насыщения и инверсном. В режиме отсечки оба перехода смещены в обратном направлении, в режиме двойной инжекции на оба перехода поданы прямые напряжения; в инверсном режиме коллекторный переход смещен в прямом, а эмиттерный — в обратном направлении.

По конструктивным особенностям и технологии изготовления биполярные транзисторы могут быть эпитаксиально-планарными, планарными, диффузионными, диффузионно-сплавными, сплавными и т. д.

В настоящее время транзисторы изготавливаются преимущественно из кремния. На рис. 4.3, а представлена полупроводниковая структура кремниевого эпитаксиально-планарного транзистора, характерная для большинства дискретных транзисторов.

На поверхности полупроводниковой пластины формируется тонкий диэлектрический слой вЮ. Сильнолегированная подложка л’ -типа (1) вместе со слаболегированным эпитаксиальным слоем л типа (2) толщиной XVэп — 10 мкм образуют коллекторную область. Области базы р типа (3) и эмиттера л’ типа (4) (рис. 4.3, а, б) создаются методом диффузии или ионной имплантации. Электроды формируются тонкопленочными металлическими полосками 5, 6, 7 (рис. 4.3, а, где аширина эмиттера). Распределение концентрации примесей в направлении от поверхности (слой 8Ю2) через эмиттер к коллектору приведено на рис. 4.3, б, где А^дЗ» #аБ, 7УдК, А^дП — концентрация доноров в эмиттере, акцепторов в базе, доноров в коллекторе и подложке соответственно. Толщина базы XV Б современных маломощных высокочастотных транзисторов составляет 0,2. 1 мкм.

Рис. 4.3

Физические процессы в нормальном активном режиме. Коэффициенты передачи тока

В активном режиме, который является наиболее распространенным, особенно для усилительных схем, эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном.

Рассмотрим транзистор рп—р-типа. (Хотя на практике чаще используют п—р—/г транзисторы, дальнейшее рассмотрение будем проводить на основе р—л—р транзисторов, так как для них направление движения дырок совпадает с направлением тока, что облегчает понимание.) В этом случае дырки, инжектированные из эмиттера в базу, движутся к коллекторному переходу. Инжекцией электронов из базы в эмиттер можно пренебречь, поскольку концентрация примесей в эмиатерной области, как правило, много больше, чем в базовой. Движение инжектированных носителей через базу обусловлено как диффузией, так и дрейфом носителей. Диффузия вызвана повышением концентрации носителей из-за их инжекции в базу около эмиттерного перехода. В области, примыкающей к коллекторному переходу, под действием обратного напряжения происходит экстракция дырок. Дрейфовое движение вызвано внутренним электрическим полем в базе, возникающим из-за неравномерного распределения в ней примеси. Такие транзисторы с неоднородно легированной базой, в которой дрейфовое движение играет значительную роль, называют дрейфовыми.

Возникновение внутреннего поля можно проиллюстрировать схемой на рис. 4.4, где представлено распределение доноров в л базе, аналогичное показанному на рис. 4.3, б. Неравномерное распределение примеси в базе, а, следовательно, и основных носителей, поскольку при комнатной температуре вся примесь ионизована, вызывает диффузию электронов в направлении

коллектора. Из-за ухода электронов в базе со стороны эмиттерного перехода образуется избыточный не скомпенсированный заряд ионов доноров, обозначенный на рис. 4.4 крестиками «+ «, а со стороны коллектора ушедшие электроны образуют избыточный отрицательный заряд «-*. В результате сформировавшихся избыточных зарядов и возникает внут-

Рис. 4.4

реннее поле ^внухр, которое будет ускоряющим для инжектированных из эмиттера дырок. Инжектированные дырки, пройдя область базы, будут втягиваться в коллектор ускоряющим электрическим полем. Часть инжектированных дырок при их движении к коллектору будет рекомбинировать в области базы, образуя базовый ток. Число рекомбинировавших носителей невелико, поскольку толщина базы мала по сравнению с диффузионной длиной дырок. В результате токи эмиттера /э и коллектора /к различаются незначительно и их разность равна току базы /Б, т. е. IБ = /э — Лс* Коллекторный ток очень слабо зависит от напряжения на коллекторном переходе, поскольку при любом обратном напряжении все дырки, дошедшие до коллекторного перехода, ускоряются его полем и уносятся в коллектор. Направление токов можно проследить по схеме на рис. 4.2.

Читать еще:  Чёрные саморезы по дереву размеры

Слабое влияние коллекторного напряжения на коллекторный ток приводит к тому, что дифференциальное сопротивление коллекторного перехода гк = КБ/(ПК очень велико, что характерно для р—п перехода, смещенного в обратном направлении. В такой ситуации в коллекторную цепь можно включить достаточно большой нагрузочный резистор Лн практически без изменения коллекторного тока. Если входной ток эмиттера увеличивается на величину Д/э, то приращение коллекторного тока Д/к будет приблизительно тем же самым, т. е. Д/э

Д/к. Увеличение ВХОДНОЙ МОЩНОСТИ ДР„Х, потребляемой в эмиттерной цепи, определяется величиной Д/э и дифференциальным сопротивлением эмиттерного перехода гэ = 1. В активном режиме ток эмиттера /э для рпр-транзистора состоит из токов инжекции дырок в базу 1Эр и электронов из базы в эмиттер /Эл, а также тока рекомбинации в переходе /Эрск, т. е. 7э = 7Эр + /Эп + ^эрек* Из всех составляющих ток инжекции

дырок 1Эр из эмиттера в базу определяет выходной коллекторный ток, и, следовательно, является полезным. Остальные две составляющие относятся к потерям, и их необходимо по возможности уменьшать. Полный ток коллектора /к, помимо тока инжекции, учитывает ток рекомбинации в базе /Брек и обратный ток коллекторного перехода /КБ0, который не зависит от тока эмиттера. Рекомбинацию инжектированных носителей в базе учтем введением коэффициента а — статического коэффициента передачи тока эмиттера в схеме с общей базой (ОБ). В результате полный ток коллектора можно записать в форме

Из выражения (4.1) следует, что

В выражении (4.2) приближенное соотношение справедливо ДЛЯ рабочих ТОКОВ /к, которые обычно МНОГО больше /кво* Физически а определяется коэффициентами инжекции эмиттера уэ = /э„//э и переноса носителей через базу ХБ = /К//Эр, т. е.

Коэффициент инжекции уэ показывает, какую часть составляет полезный ток инжекции дырок из эмиттера в базу в полном токе эмиттера. Величина ХБ отражает потери инжектированных дырок при их движении через базу за счет рекомбинации. Рекомбинация определяет ток базы, который равен /Б = = /э — /к. Если воспользоваться соотношением (4.1), то можно получить

Из выражения (4.3) видно, что при токе /э = ^кво/(1 — °0 ток /Б = 0. Рабочие токи эмиттера значительно больше /Кво/(1 ” °0″ тогда ток базы можно вычислить по формуле

В импульсных и цифровых интегральных схемах достаточно широко используется инверсный режим, когда в противоположность нормальному режиму роли эмиттера и коллектора меняют-

ся местами. В инверсном режиме коллекторный переход смещен в прямом направлении, а эмиттерный — в обратном. Входным током в схеме с ОБ будет коллекторный ток, а выходным — эмиттерный. Аналогично (4.1) для инверсного режима

где а7 — инверсный коэффициент передачи тока, /:)БО — обратный ток эмиттерного перехода при /к = 0.

Из (4.5) следует, что

причем аналогично (4.2) а7 = укА.Б7, г Д е 7к — коэффициент инжекции коллектора, ХБ1 — инверсный коэффициент переноса.

Для большинства транзисторов at > а, поскольку коллекторный переход не обладает, в отличие от эмиттерного, свойством односторонней инжекции, так как концентрация примеси в коллекторной области много меньше, чем в эмиттерной (см. рис. 4.3). В результате ук 0,99, тогда р > 100.

В режиме насыщения происходит двусторонняя инжекция неосновных носителей через оба перехода, которые смещены в прямом направлении. В этом случае ток базы будет больше по сравнению с нормальным, или активным режимом (НАР), поскольку из-за инжекции носителей из базы в коллектор и из коллектора в базу происходит дополнительная рекомбинация носителей и /Б > (1 — а)/э для схемы с ОБ или р/Б > /к для схемы с ОЭ.

В режиме отсечки на оба перехода подаются обратные напряжения и через переходы протекают обратные токи /эБО и /кво. Поскольку площадь и толщина коллекторного перехода больше, чем эмиттерного (степень легирования эмиттерной области много больше, как правило, чем коллекторной), то /КБО ^ /Эбо*

Рассмотренные коэффициенты передачи токов зависят от всех составляющих токов, протекающих во всех цепях транзистора, поэтому схи(3 будут изменяться как функции тока эмиттера, напряжения на коллекторе, температуры и т. д.

Источник: studme.org

Биполярные транзисторы

Термин «биполярный транзистор» связан с тем, что в этих транзисторах используются носители зарядов двух типов: электроны и дырки. Для изготовления транзисторов применяют те же полупроводниковые материалы, что и для диодов.

В биполярных транзисторах с помощью трехслойной полупроводниковой структуры из полупроводников различной электропроводности создаются два p–n-перехода с чередующими типами электропроводности (p–n–p или n–p–n).

Биполярные транзисторы конструктивно могут быть беcкорпусными (рис.1,а) (для применения, например, в составе интегральных микросхем) и заключенными в типовой корпус (рис. 1,б). Три вывода биполярного транзистора называются база , коллектор и эмиттер .

Рис. 1. Биполярный транзистор: а) p–n–p-структуры без корпуса, б) n–p–n-структуры в корпусе

В зависимости от общего вывода можно получить три схемы подключения биполярного транзистора : с общей базой (ОБ), общим коллектором (ОК) и общим эмиттером (ОЭ). Рассмотрим работу транзистора в схеме с общей базой, (рис. 2).

Рис. 2. Схема работы биполярного транзистора

Эмиттер инжектирует (поставляет) в базу основные носители, в нашем примере для полупроводниковых приборов n-типа ими будут электроны. Источники выбирают так, чтобы E2 >> E1. Резистор Rэ ограничивает ток открытого p–n-перехода.

При E1 = 0 ток через коллекторный переход мал (обусловлен неосновными носителями), его называют начальным коллекторным током Iк0. Если E1 > 0, электроны преодолевают эмиттерный p–n-переход (E1 включена в прямом направлении) и попадают в область базы.

Базу выполняют с большим удельным сопротивлением (малой концентрацией примеси), поэтому концентрация дырок в базе низкая. Следовательно, немногие попавшие в базу электроны рекомбинируют с ее дырками, образуя базовый ток Iб. Одновременно в коллекторном p–n-переходе со стороны E2 действует много большее поле, чем в эмиттерном переходе, которое увлекает электроны в коллектор. Поэтому подавляющее большинство электронов достигают коллектора.

Эмиттерный и коллекторный токи связаны коэффициентом передачи тока эмиттера

Всегда ∆ Iк ∆ Iэ, а a = 0,9 — 0,999 для современных транзисторов.

В рассмотренной схеме Iк = Iк0 + aIэ » Iэ. Следовательно, схема биполярного транзистора с общей базой обладает низким коэффициентом передачи тока. Из-за этого ее применяют редко, в основном в высокочастотных устройствах, где по усилению напряжения она предпочтительнее других.

Основной схемой включения биполярного транзистора является схема с общим эмиттером, (рис. 3).

Рис. 3. Включение биполярного транзистора по схеме с общим эмиттером

Для нее по первому закону Кирхгофа можно записать Iб = Iэ – Iк = (1 – a)Iэ – Iк0 .

Учитывая, что 1 – a = 0,001 — 0,1, имеем Iб

Найдем отношение тока коллектора к току базы:

Это отношение называют коэффициентом передачи тока базы . При a = 0,99 получаем b = 100. Если в цепь базы включить источник сигнала, то такой же сигнал, но усиленный по току в b раз, будет протекать в цепи коллектора, образуя на резисторе Rк напряжение много большее, чем напряжение источника сигнала.

Для оценки работы биполярного транзистора в широком диапазоне импульсных и постоянных токов, мощностей и напряжений, а также для расчета цепи смещения, стабилизации режима используются семейства входных и выходных вольтамперных характеристик (ВАХ ) .

Семейство входных ВАХ устанавливают зависимость входного тока (базы или эмиттера) от входного напряжения Uбэ при Uк = const, рис. 4,а. Входные ВАХ транзистора аналогичны ВАХ диода в прямом включении.

Семейство выходных ВАХ устанавливает зависимость тока коллектора от напряжения на нем при определенном токе базы или эмиттера (в зависимости от схемы с общим эмиттером или общей базой), рис. 4, б.

Рис. 4. Вольт-амперные характеристики биполярного транзистора: а – входные, б – выходные

Кроме электрического перехода n–p, в быстродействующих цепях широко используется переход на основе контакта металл–полупроводник – барьер Шоттки (Schottky). В таких переходах не затрачивается время на накопление и рассасывание зарядов в базе, и быстродействие транзистора зависит только от скорости перезарядки барьерной емкости.

Читать еще:  Кованые элементы ограждения лестниц

Рис. 5. Биполярные транзисторы

Параметры биполярных транзисторов

Для оценки максимально допустимых режимов работы транзисторов используют основные параметры:

1) максимально допустимое напряжение коллектор–эмиттер (для различных транзисторов Uкэ макс = 10 — 2000 В),

2) максимально допустимая мощность рассеяния коллектора Pк макс – по ней транзисторы делят на транзисторы малой мощности (до 0,3 Вт), средней мощности (0,3 — 1,5 Вт) и большой мощности (более 1,5 Вт), транзисторы средней и большой мощности часто снабжаются специальным теплоотводящим устройством – радиатором,

3) максимально допустимый ток коллектора Iк макс – до 100 А и более,

4) граничная частота передачи тока fгр (частота, на которой h21 становится равным единице), по ней биполярные транзисторы делят:

  • на низкочастотные – до 3 МГц,
  • среднечастотные – от 3 до 30 МГц,
  • высокочастотные – от 30 до 300 МГц,
  • сверхвысокочастотные – более 300 МГц.

Источник: electricalschool.info

Коэффициент передачи по току в биполярном транзисторе

Биполярный транзистор – полупроводниковый элемент с двумя pn переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают pnp и npn типа. На рис. 1, а и б показаны их условные обозначения.

Рис. 1. Биполярные транзисторы и их диодные эквивалентные схемы:

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p— или n— слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер – база смещен в прямом направлении (открыт), а переход база – коллектор – в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис. 2.

Транзисторы npn типа подчиняются следующим правилам (для транзисторов pnp типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

  1. Коллектор имеет более положительный потенциал, чем эмиттер.
  2. Цепи база-эмиттер и база-коллектор работают как диоды (рис. 1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 – 0,8В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением:
  1. Каждый транзистор характеризуется максимальными значениями IК,IБ,UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуре, UБЭ и др.
  2. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы.

Соотношение токов коллектора и эмиттера приблизительно равно

где α = 0,95…0,99 – коэффициент передачи тока эмиттера.

Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 2, а) представляет собой базовый ток

Ток коллектора зависит от тока базы в соответствии с выражением:

где β = α/(1–α) – коэффициент передачи тока базы, β >>1.

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Режимы работы транзистора

Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.

Усилительный или активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.

Инверсный режим – к коллекторному переходу подведено прямое напряжение, а к эмиттерному – обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.

Режим насыщения – оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.

Режим отсечки – к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.

Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.

Схемы включения транзистора

В зависимости от того, какой из выводов транзистора является общим для входа и выхода, различают схему включения транзистора с общим эмиттером (ОЭ), рис. 2, общей базой (ОБ) рис. 3, а, и общим коллектором (ОК) рис. 3, б.

В случае включения транзистора в схему с ОЭ входным током является ток базы, выходным – ток коллектора. Схема с ОЭ является самой распространенной, так как она дает наибольшее усиление по мощности. Усилительные свойства транзистора при включении его по схеме с ОЭ характеризует один из главных его параметров – коэффициент передачи тока базы – β. Коэффициент β для разных транзисторов лежит в диапазоне от десятков до тысяч, а реальный коэффициент усиления по току каскада всегда меньше, так как при включении нагрузки ток коллектора транзистора уменьшается.

Важная величина, характеризующая транзистор – его входное сопротивление. Для схемы с ОЭ оно составляет от сотен до единиц кОм, что является сравнительной малой величиной. Это существенный недостаток биполярных транзисторов. Выходное сопротивление схемы составляет от единиц до десятков кОм.

К недостаткам схемы с ОЭ относятся также меньший по сравнению со схемой ОБ частотный диапазон и меньшая температурная стабильность.

В схеме с ОБ выходным током является ток коллектора, а входным – ток эмиттера. Хотя эта схема дает значительно меньшее усиление по мощности и имеет еще меньшее входное сопротивление, чем схема с ОЭ, все же ее иногда применяют, так как по своим частотным и температурным свойствам она значительно лучше схемы с ОЭ. Коэффициент усиления по току каскада несколько меньше единицы, по напряжению – такой же, как и в схеме с ОЭ. Входное сопротивление для схемы с ОБ получается в десятки раз меньше, чем в схеме с ОЭ, выходное сопротивление в этой схеме получается до 100 кОм. Следует отметить, что каскад с ОБ вносит при усилении меньшие искажения, чем каскад по схеме с ОЭ.

В схеме с ОК (рис. 3, б) коллектор является общей точкой входа и выхода, поскольку источники питания Е1 и Е2 всегда шунтированы конденсаторами большой емкости и для переменного тока могут считаться короткозамкнутыми. Особенность этой схемы в том, что входное напряжение полностью передается обратно на выход, т.е. сильна отрицательная обратная связь. Именно поэтому такой каскад называют эмиттерным повторителем.

Коэффициент усиления по напряжению схемы с ОК близок к единице, причем всегда меньше ее, коэффициент усиления по току почти такой же, как в схеме с ОЭ, коэффициент усиления по мощности равен нескольким десяткам. Входное сопротивление каскада в схеме с ОК составляет десятки килом, выходное – единицы килом и сотни Ом, что является важным достоинством схемы.

Схема с ОК называется эмиттерным повторителем и используется для согласования источников сигналов и нагрузок.

Транзистор как активный нелинейный четырехполюсник

Основными параметрами, характеризующими транзистор как активный нелинейный четырехполюсник (при любой схеме включения), являются коэффициенты усиления:

Для удобства сравнения параметры трех схем включения транзисторов сведены в табл. 1.

Таблица. 1 Важнейшие параметры основных схем включения транзисторов

Источник: xn----etb8afbn2f.xn--p1ai

Ссылка на основную публикацию
Adblock
detector