Классификация сталей термическая обработка сталей

Классификация сталей термическая обработка сталей

План-конспект урока по технологии (Технический труд) на тему: Классификация сталей. Термическая об­работка сталей.

Вложение Размер
plan_uroka_po_teme_klassifikatsiya_staley._termicheskaya_obrabotka_staley_7_klass.doc 63.5 КБ

Предварительный просмотр:

Тема: Классификация сталей. Термическая обработка сталей.

Цели: изучить основные виды, свойства и назначения различных сталей. Научить отличать обрабатываемость сталей. Изучить основные приемы термообработки сталей.

Оснащение урока: таблицы по термообработке сталей, тиски, напильник, образцы сталей.

Объект и содержание работы: работа с учебником и образцами стали.

I. Вводная часть.

1. Повторение ранее пройденного материала.

  1. Учащимся предлагается вспомнить из курса VI класса об основных свойствах металлов.

— Какие металлы вы знаете?

— Какими свойствами обладают металлы?

— Какие изделия изготавливают из металлов?

II. Изложение программного материала.

Для начала учащимся демонстрируются изделия из различных видов сталей (уголок, пружина, фреза или метчик и т.д.).

Общие сведения о металлах и сплавах

Работая с заготовками из разных металлов, вы успели заметить, что металлы обладают различными свойствами: одни из них хрупкие, другие упругие, одни мягкие, другие более твердые. Для всех металлов характерен металлический блеск. Различаются металлы по цвету — медь, например, розово-красная, сталь — сероватого цвета. Металлы обладаю свойством проводить тепло и электрический ток. Знать свойства металлов надо для того, чтобы правильно выбрать материал для изготовления изделия.

В чистом виде металлы используются относительно редко. Больше всего они применяются в виде сплавов.

Сплавами металлов называются сложные вещества, полученные путем сплавления одною металла с другими или металла с неметаллическими элементами. Все металлы и сплавы принято делить на черные и цветные.

В группу черных металлов входят железо, чугун и сталь, в группу цветных все остальные металлы и сплавы.

Железо- металл серебристо-белого цвета с характерным блеском. Он пластичен, хорошо обрабатывается, широко распространен в природе, но в чистом виде почти не встречается. Железо находится в земной коре в составе соединения с кислородом и другими элементами. Эти соединения называют железными рудами. Из них получают железо, которое применяю в виде различных сплавов с углеродом — чугунов и сталей.

Чугун — сплав железа с углеродом, содержащий более 2% (обычно 3. 4.5%) углерода, а также примеси других элементов

Чугун является одним из самых дешевых и распространенных конструкционных материалов и широко применяется в машиностроении. Кроме того, из чугуна получают сталь.

Сталь- это сплав железа с углеродом, содержащий до 2,1 % углерода. Как и чугун, сталь содержит в себе примеси некоторых других элементов. Основное отличие стали от чугуна — это то. что сталь содержит меньшее количество углерода и примесей.

Сталь и чугун являются самыми распространенными материалами современной техники и производства. На их долю приходится основная масса всей металлической продукции.

Среди цветных металлов наиболее широкое применение имеют медь, алюминий и сплавы на их основе, а также олово, цинк и др.

Медь — металл розовато-красного цвета, обладающий электропроводностью и теплопроводностью, хорошей пластичностью, но сравнительно невысокой прочностью, хорошо обрабатывается. Применяется, прежде всего, в электропромышленности и химическом машиностроении. Сплавы меди обычно делят на две группы -латуни и бронзы.

Латунь сплав меди с цинком (цинка от 10 до 42%). Латунь отличается от меди большей прочностью.

Бронзам и называют сплавы меди с оловом или другими элементами, кроме цинка. В основном бронзы характеризуются высокой прочностью, хорошо обрабатываются резанием, обладают высокими литейными качествами и низким коэффициентом трения.

Алюминий — металл серебристо-белого цвета: гибкий, мягкий и вязкий, хорошо отливается и прокатывается в листы и проволоку. Алюминий широко используется в авиастроении, в электротехнике и при изготовлении посуды и других предметов быта. Большое распространение имеет алюминий в составе сплавов на его основе.

Олово—металл серебристо-белого цвета, весьма мягкий и пластичный. Олово можно легко раскатать в очень тонкие листы, называемые фольгой. Его применяют для покрытия тонких листов стали и получения белой жести. Олово входит в состав многих сплавов: припоев, применяемых для пайки и лужения, баббитов, бронз, латуни и т. д.

Цинк — это светло-серый металл с голубым оттенком. Обладает высокой коррозийной стойкостью. Благодаря этому качеству цинк применяется для покрытия стальных изделий в целях защиты их от коррозии, например для получения оцинкованного железа. Цинк входит в состав некоторых сплавов латуни и др.

Виды стали и ее применение

Сталь занимает особое место среди металлов и сплавов. Она служит материальной основой практически всех отраслей техники и производства. В зависимости от состава стали подразделяются на углеродистые и легированные.

Углеродистые стали — это сплавы железа с углеродом, в состав которых входят некоторые обычные примеси. Углерод придает стали твердость, но увеличивает хрупкость и снижает пластичность.

Легированные стали — сплавы, в которые, кроме железа, углерода и обычных примесей, входят так называемые легирующие элементы (хром, никель, вольфрам и др.). Добавление их в сталь во время плавки изменяет ее свойства. Одни элементы повышают твердость и прочность, другие — упругость, третьи повышают коррозийную стойкость стали, улучшают другие полезные свойства и качества.

По назначению стали делят на конструкционные, инструментальные и специальные с особыми свойствами.

Конструкционные стали — уже их название говорит о том, что они применяются для изготовления различных металлических конструкций, деталей механизмов и машин и т. д. Конструкционная углеродистая сталь бывает обыкновенного качества и качественной.

Сталь обыкновенного качества обладает невысокой прочностью и применяется для изготовления болтов, шайб, мягкой проволоки, заклепок и т. д.

Качественная углеродистая сталь более прочная, и из нее изготовляют зубчатые колеса, шкивы и другие детали машин.

Все стали маркируются, т. е. имеют условные обозначения, которые показывают вид стали, ее состав, свойства и т. д. (см. приложение).

Конструкционная углеродистая сталь обыкновенного качества маркируется буквами «Ст.» и порядковым номером от о до 7. Например, Ст.О, Ст.1 и т.д. Чем выше номер стали, тем больше в ней содержание углерода и выше прочность. Качественная углеродистая сталь обозначается цифрами, указывающими содержание углерода в сотых долях процента. Например, «Сталь 45» — сталь, содержащая 0,45 % углерода. Более подробно по марке стали можно определить ее состав и свойства, пользуясь специальным справочником.

Инструментальные углеродистые стали тоже подразделяются на качественные и высококачественные.

Инструментальные стали отличаются от конструкционных большей твердостью и прочностью. Они применяются для изготовления различного режущего и контрольно-измерительного инструмента.

Инструментальные качественные и высококачественные стали маркируются буквами и цифрами, указывающими содержание углерода в десятых долях процента. Например, У8 и У8А — углеродистая сталь, 8—0,8 % углерода, А — высококачественная сталь.

Специальные стали — это стали с особыми свойствами: нержавеющие, износостойкие и др.

Широко и разнообразно применение легированных сталей. Конструкционные и инструментальные легированные стали маркируются сочетанием цифр и букв. Цифры, стоящие в начале марки, указывают среднее содержание углерода в десятых долях процента для инструментальных сталей и в сотых долях процента для конструкционных. Если цифры отсутствуют, то содержание углерода около 1 %. Легирующие элементы, входящие в сталь, обозначаются в марке легированной стали буквами русского алфавита: хром — X, никель — Н, вольфрам — В, марганец —Г, ванадий — Ф, алюминий — Ю и т.д. Цифры после букв указывают среднее содержание этих элементов в процентах. Если цифры отсутствуют, то содержание элемента около 1%. Буква А в конце марки означает, что сталь высококачественная. Пример марки легированной стали: 12Х2Н4А — это высококачественная хромоникелевая сталь, содержащая 0,12 % углерода, 2 % хрома, 4 % никеля. Другой пример марки: ХВГ — хромовольфрамомарганцевая сталь, в которой углерода и легирующих элементов примерно по 1 %.

В школьных учебных мастерских используется для режущих инструментов быстрорежущая сталь. Она обозначается буквой Р с цифрой. Цифра указывает процентное содержание в стали вольфрама. Например: Р18 — быстрорежущая сталь, содержащая 18 % вольфрама. Если в марке указаны другие буквы и цифры, то они показывают процентное содержание в стали других легирующих элементов. Например: Р6М5 быстрорежущая сталь с содержанием вольфрама 6 %, молибдена 5 %.

Термообработка — это нагрев стали до определенной температуры, выдержка и охлаждение. Различают три вида термообработки: закалка, отпуск, отжиг.

Теперь давайте рассмотрим эти три вида термообработки.

Закалка — это нагрев металла до определенном температура, выдержка при этой температуре и быстрое охлаждение в воде, масле или специальных растворах.

Закалка повышает твердость и прочность, но повышает хрупкость.

Отпуск позволяет снизить хрупкость и увеличить пластичность. Отпуск — это нагрев до 400 — 500°С и охлаждение в воде или на воздухе.

Отжиг снижает твердость стали и делает ее мягче. При отжиге заготовку нагревают, выдерживают при этой температуре и медленно, часто вместе с печью, охлаждают.

Для выполнения операций по термообработке в условиях мастерской применяю муфельную печь. Температуру закалки можно контролировать по цветам каления (см. таблицу 1), а температуру отпуска — но цветам побежалости (см. таблицу 2)

Таблица 1 Цвет каления при закалке заготовок

Источник: nsportal.ru

Классификация сталей термическая обработка сталей

Технология обработки металлов
Элементы машиноведения

16. Классификация сталей. Термическая обработка сталей

Как вам уже известно, сталь — это сплав железа с углеродом и другими химическими элементами. По химическому составу стали подразделяются на углеродистые и легированные.

В углеродистой стали содержится 0,4. 2% углерода. Углерод повышает твердость стали, но увеличивает ее хрупкость и снижает пластичность.
Конструкционная углеродистая сталь бывает обыкновенного качества и качественная.

Сталь обыкновенного качества обозначается буквами Ст и цифрой от 0 до 7: Ст 0, Ст 1 и т.д. Цифры показывают порядковый номер марки стали. Чем больше цифра, тем выше содержание углерода и прочность стали. Из стали обыкновенного качества изготавливают строительные конструкции, гайки, болты, заклепки, трубы, листовой прокат и др.

Углеродистая качественная сталь обладает повышенной прочностью. Она обозначается двумя цифрами: 05, 08, 10, 20, 30 и т.д. Цифры показывают содержание углерода в сотых долях процента. Из этой стали изготавливают зубчатые колеса, валы, оси, шкивы и др.

Инструментальная углеродистая сталь обладает большей прочностью и твердостью, чем конструкционная, и применяется для изготовления молотков, зубил, ножниц по металлу, ножовочных полотен, напильников и др. Обозначается она: У10, У11, У12 и т.д. Цифры показывают содержание углерода в десятых долях процента.

При добавлении в сталь во время плавки других элементов ( хрома, никеля, вольфрама и др.) изменяются ее свойства. Одни элементы повышают прочность и твердость, другие — упругость, третьи делают сталь антикоррозионной и т.д. Стали, в которых есть эти элементы, называются легированными. Легирующие добавки в сталях обозначают буквами: X — хром, В — вольфрам, Н — никель, Г — марганец, Ф — ванадий, М — молибден и т.д. Например, в стали 40ХН 0,4% углерода и по одному проценту хрома и никеля.

Легированные конструкционные стали применяют для изготовления рессор, пружин, шестерен и др., а легированные инструментальные для изготовления режущего инструмента: фрез, зенкеров, плашек, метчиков и др.

Свойства сталей можно изменять с помощью теплового воздействия — термической обработки (термообработки). Она заключается в нагреве заготовки до определенной температуры, выдержке при этой температуре и последующем охлаждении. Температура нагрева зависит от вида термообработки и содержания углерода в стали.

Различают следующие виды термообработки: закалку, отпуск, отжиг.

При закалке металл нагревают до определенной температуры (например, до 800°С), выдерживают при этой температуре, а затем быстро охлаждают в воде, масле, водных растворах солей. Закалка повышает твердость и прочность стали, но вместе с тем повышается и ее хрупкость.

Хрупкость стали после закалки можно уменьшить с помощью отпуска. Отпуск представляет собой нагрев остывшей закаленной детали до определенной температуры (например, до 400. 500°С) с последующим охлаждением в воде или на воздухе. Отпуск повышает пластичность стали, что улучшает ее обрабатываемость.

При отжиге заготовку нагревают до определенной температуры, выдерживают при этой температуре и медленно, часто вместе с печью, охлаждают (в этом главное отличие от закалки). Отжиг резко снижает твердость стали, она становится мягче и лучше обрабатывается.

Углеродистые стали, содержащие менее 0,25. 0,3 % углерода, не закаливают из-за незначительного увеличения твердости и прочности. У сталей, содержащих более 0,3 % углерода, после закалки в несколько раз повышается твердость и прочность.

Проводить рассмотренные выше виды термообработки можно в школьных мастерских, пользуясь муфельными печами небольшого размера. Температуру закалки можно контролировать по цветам каления. При нагреве стальной заготовки она изменяет определенным образом свой цвет, поэтому по ее цвету приближенно устанавливают температуру, до которой она нагрета (табл. 3).

Температуру отпуска можно контролировать по цветам побежалости (табл. 4). Например, если при нагреве поверхность заготовки приобрела темно-синий оттенок, значит, она нагрета до температуры примерно 300°С.

На предприятиях термическую обработку материалов выполняют рабочие — термисты. Термист должен разбираться в свойствах металлов, хорошо знать режимы термообработки различных сплавов, умело пользоваться термическими печами, строго соблюдать правила безопасности.



Практическая работа

Ознакомление с термической обработкой стали

Внимание: пункты 2, 3, 5 выполняет учитель.

1. Закрепите в тисках образец из незакаленной стали (например, с содержанием углерода 0,6%) и проведите по ней несколько раз напильником. Сделайте вывод об обрабатываемости незакаленной стали.
2. Поместите образец в электрическую (муфельную) печь, нагретую до 800°С, и выдержите его 15. 20 мин. Температуру нагрева образца определите по табл. 3.
3. Опустите раскаленный образец в воду или масло.
4. Закрепите образец в тисках и попытайтесь обработать его напильником. Сделайте вывод об обрабатываемости закаленной стали.
5. Поместите образец в печь, нагретую до температуры 400. 550°С, и выдержите 15. 20 мин, после чего охладите в воде или на воздухе.
6. Опилите образец в тисках и сделайте вывод о его обрабатываемости после отпуска.

О
Углеродистая и легированная сталь, термическая обработка, закалка, отпуск, отжиг.

1. Сколько углерода содержится в углеродистой стали?
2. Чем отличаются углеродистые стали от легированных?
3. Где применяется инструментальная углеродистая сталь? Как она обозначается?

4. Где используются легированные конструкционные стали?

5. Что такое термическая обработка?

6. Как изменяются свойства стали при закалке?

7. Для какой цели выполняют отпуск сталей?

8. Что такое отжиг сталей и в чем он состоит?

Самородский П.С., Симоненко В.Д., Тищенко А.Т., Технология. Трудовое обучение: Учебник для учащихся 7 класса (вариант для мальчиков) общеобразовательной школы. / Под ред. В.Д. Симоненко.— М.: Вентана-Графф, 2003. — 192 е.: ил.

онлайн библиотека с учебниками и книгами, планы конспектов уроков по технологии, задания по технологии 7 класса скачать

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Источник: edufuture.biz

Классификация сталей термическая обработка сталей

ЛЕКЦИЯ № 9. Классификация сталей и их назначение

1. Углеродистые и легированные конструкционные стали: назначение, термическая обработка, свойства

Из углеродистых качественных конструкционных сталей производят прокат, поковки, калиброванную сталь, сталь—серебрянку, сортовую сталь, штамповки и слитки. Эти стали являются основным материалом для изготовления таких деталей машин, как валы, шпиндели, винты, гайки, упоры, тяги, цилиндры гидроприводов, звездочки цепных передач, т. е. деталей различной степени нагружения. Различные специальные виды термообработки углеродистых сталей проводятся с целью обеспечения необходимых параметров вязкости, упругости и твердости. В конечном итоге термическая обработка данных сталей и деталей приводит к увеличению их износостойкости и надежности. Углеродистые качественные конструкционные стали обладают более высокими механическими свойствами, чем стали обыкновенного качества, за счет меньшего содержания в них фосфора, серы и других неметаллических включений. По видам обработки углеродистые конструкционные стали подразделяются на горячекатаные, кованые, калиброванные и серебрянку (со специальной отделкой поверхности). В зависимости от состояния материала указанные стали выпускаются без термической обработки, термически обработанные (Т) и нагартованные (Н). В соответствии с назначением горячекатаная и кованая углеродистые конструкционные стали делятся на подгруппы: «а» – для горячей обработки давлением; «б» – для механической обработки резанием на станках; «в» – для холодного волочения.

Легированными называют стали, которые, кроме обычных примесей (марганца, кремния, серы и фосфора), содержат ряд элементов, специально вводимых в сталь при ее выплавке для получения заданных свойств. Эти элементы называют легирующими. В качестве легирующих элементов чаще всего применяют никель, хром, вольфрам, молибден, титан, ванадий, алюминий. Конструкционные легированные стали подразделяются на горячекатаную, кованую, калиброванную и сталь—серебрянку, применяемую в термически обработанном состоянии. Горячекатаная и кованая стали поставляются как в термически обработанном состоянии (отожженные, вы—сокоотпущенные, нормализованные или нормализованные с высоким отпуском), так и без термообработки, стали калиброванная и серебрянка – нагартованными или термически обработанными (отожженными, отпущенными, нормализованными, закаленными с отпуском). Стандартом (ГОСТом) предусмотрен выпуск и изготовление 13 групп конструкционных легированных сталей, каждая из которых получила название по преобладающему в ней легирующему элементу. Например, хромистые легированные стали – 15Х, 15Ха, 20Х, 30Х, 30ХРА, 35Х, 38ХА, 40Х, 45Х, 50Х; из этих сталей изготовляют детали, от которых наряду с высокой износостойкостью требуется минимальная деформация при термообработке, улучшенные и закаленные детали, работающие при средних скоростях и высоких удельных давлениях (шестерни, кольца, зубчатые рейки и т. д.), нагруженные детали автомобилей и тракторов, а также крупные детали, требующие высокой прокаливаемости и общей повышенной прочности.

2. Стали, устойчивые против коррозии

Стали, устойчивые против коррозии, – это нержавеющие стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии и коррозии под напряжением. К этим сталям относятся следующие марки: 20Х13 (2Х13), 08Х13 (0Х13), 25Х13Н2 (2Х14Н2, ЭИ474). Они применяются для изготовления деталей с повышенной пластичностью, подвергающихся ударным нагрузкам (клапанов гидравлических прессов), деталей, работающих в слабоагрессивных средах (при атмосферных осадках, в водных растворах солей, органических кислот); высокая коррозионная стойкость обеспечивается после термической обработки и полировки.

Сталь марки 14Х14Н12 (1Х17Н2, ЭИ268) применяется в основном в химической и авиационной промышленности; обладает достаточно удовлетворительными технологическими свойствами.

Сталь марки 15Х25Т (Х25Т, ЭИ439) применяется в производстве теплообменной аппаратуры (труб, соединительных фланцев, вентилей, кранов), работающей в агрессивных средах; используется в качестве заменителя стали марки 12Х18М10Т при изготовлении сварных конструкций, работающих в более агрессивных средах, чем среды, рекомендуемые для стали марки 08Х17Т; не рекомендуется применение этой стали (15Х25Т) при температурах +400–700 °C. 08Х21Н6М2Т идет на изготовление деталей и сварных конструкций, работающих в средах повышенной агрессивности – уксуснокислых, сернокислых и фосфорнокислых; марки 10Х17Н13М2Т, 10Х17Н13М3Т используются для производства сварных конструкций, работающих в условиях действия кипящей фосфорной, серной и 10 %-ной уксусной кислот, а также в сернокислых средах.

В ряде узлов механизмов подшипники работают в агрессивных средах и при повышенных температурах. В этих узлах используется в основном коррозионно—стойкая сталь 95?18. Микроструктура коррозионно—стойкой стали 95 ? 18 – скры—тоигольчатый мартенсит и избыточные карбиды, а микроструктура аналогичной стали 11 ? 18 М – скрыто—и мелкокристаллический мартенсит и избыточные карбиды, но игольчатый мартенсит в стали 11 ? 18 М не допускается. В случае работы подшипников при температурах от —200 °C до +120 °C наилучший комплекс механических и антикоррозионных свойств используемых сталей имеет место при следующем режиме термической обработки: подогрев – до +350 °C, окончательный нагрев при +1070 °C ± 20 °C, закалка – в масле с температурой от +30 до +60 °C, обработка холодом – при —70 °C и отпуск – от +150 до +160 °C.

Как показала многолетняя практика применения в различных отраслях промышленности, коррозионная стойкость сталей зависит от многих факторов:

1) от используемых легирующих элементов – хрома, никеля, алюминия, титана, молибдена, их сочетаний и процентного содержания в сплавах; например высокими антикоррозионными свойствами обладают хромомолибде—новые и хромомолибденованадиевые стали марок 15ХМ, 20ХМ, 30Х3МФ, 40ХМФА;

2) от термической или химико—термической обработки;

3) от качества обработки поверхности сталей и деталей, работающих в агрессивных средах («зеркальные» поверхности, как правило, более устойчивы к коррозии, чем шероховатые).

3. Жаропрочные стали и сплавы

Жаропрочные стали и сплавы относятся к третьей группе высоколегированных сталей. Их микроструктура после термической обработки должна состоять из скрыто—и мелкоигольчатого мартенсита или мелкоигольчатого мартенсита и избыточных карбидов легирующих элементов (MoC, CrC, NiC и т. д.).

К жаропрочным сталям и сплавам относятся:

1) 40Х9С2. Применяется для изготовления клапанов моторов и крепежных деталей, работающих в условиях высоких температур – около +1000 °C;

2) Х1560–Н. Используется для изготовления нагревательных элементов (рабочая температура нагревательных элементов +1000–1300 °C);

3) Х20Н80, Х20Н80–ВИ (выплавляется вакуумно—индук—ционных способом);

4) Х15Н60–Н—ВИ, Н50К10, Х13Ю4, ОХ23Ю5, ОХ23Ю5А, Ох27Ю5А. Из этих сплавов изготовляют термодатчики и термочувствительные элементы, проволоку и ленту для нагревательных печей, электрических аппаратов теплового действия, микропроволоку для резисторов неответственного назначения; указанные сплавы работают в интервале от +1000 до +1300 °C.

К жаропрочным сталям и сплавам относятся также следующие марки:

1) ХН60Ю. Применяется для изготовления деталей турбин (из листового проката), работающих при умеренных напряжениях, а также для нагревательных приборов сопротивления;

2) 20Х23Н18. Идет на изготовление деталей машин для химической и нефтяной промышленности, запорной арматуры для газопроводов, камер сгорания, а также для нагревательных приборов сопротивления;

3) 09Х16Н15М3Б. Используется в производстве труб пароперегревателей и трубопроводов высокого давления;

4) 12Х18Н10Т, 12Х18Н12Т, 12Х18Н9Т. Применяются для изготовления деталей выхлопных систем и труб (из листового и сортового проката), сталь 12Х18Н12Т более стабильна при эксплуатации, чем сталь марки 12Х18Н10Т;

5) 40Х15Н7Г7Ф2МС. Идет на изготовление крепежных деталей, работающих при температуре +650 °C. Жаропрочность сталей и сплавов зависит от состава легирующих элементов, их сочетания и концентрации. ГОСТ 5632–72 рекомендует оптимальные интервалы температур, при которых детали, изготовленные из жаропрочных сталей и сплавов, обладают наибольшей надежностью в работе. Кроме того, в стандарте для каждой марки стали или сплава указаны температура начала интенсивного окалинообразова—ния и срок работы деталей из них – кратковременный, ограниченный, длительный и весьма длительный. За кратковременный срок работы условно принимают время службы детали до 100 ч, ограниченный – до 1000 ч, длительный – до 10 000 ч и весьма длительный – до 100 000 ч.

Жаропрочные сплавы бывают высоколегированными и прецизионными. Прецизионные сплавы характеризуются высокой чистотой компонентов, их точным соотношением. Маркировка прецизионных сплавов немного отличается от маркировки легированных сталей и сплавов. ГОСТ 10994–74 регламентирует химический состав, основные физические свойства и области применения каждого сплава. Выше были перечислены жаропрочные прецизионные сплавы и указаны области их применения – Н50К10, Х13Ю4, ОХ23Ю5, Х15Н60–Н и т. д.

4. Инструментальные материалы: инструментальные и быстрорежущие стали

Инструментальные легированные стали применяются для изготовления режущего и измерительного инструмента, а так же штампов. Стали, предназначенные для изготовления режущего инструмента (резцов, сверл, фрез и др.), должны обладать высокой твердостью (HRC l 62) и износостойкостью. Если обработка резанием выполняется в тяжелых условиях – большие скорости резания, обработка твердых металлов, большое сечение снимаемой стружки – то при этом затрачивается значительная механическая энергия, которая сопровождается сильным нагревом режущей кромки инструмента. Поэтому сталь, применяемая для изготовления инструмента, должна иметь высокую твердость и теплостойкость (или красностойкость). В сталях, используемых для изготовления штампов, должны сочетаться твердость и вязкость, а также термостойкость (способность сопротивляться резкому изменению температуры в виде устойчивости против появления трещин разгара).

Инструментальные легированные стали содержат карбидо—образующие элементы: хром, вольфрам, молибден, марганец, ванадий. Эти стали имеют меньшую скорость охлаждения при закалке, за счет чего уменьшается опасность образования трещин, деформации и коробления.

Сталь поставляется горячекатаной, кованой, калиброванной и шлифованной (серебрянка). Стандарт предусматривает две группы и пять подгрупп инструментальных легированных сталей. Содержание как серы, так и фосфора в них не должно превышать 0,03 %, а содержание серы в стали, полученной методом электрошлакового переплава, не должно быть выше 0,015 %. Стали для режущего и измерительного инструмента изготавливаются с неглубокой (7ХФ, 8ХФ 11ХФ) и с глубокой прокаливаемостью (9Х1, Х, 12Х1, 9ХС, 8ГС, 8Х6НФТ). Из этих сталей изготавливаются метчики плашки, сверла, фрезы, ножовочные полотна, калибры, шаблоны и т. д. Инструментальные быстрорежущие стали получили такое название потому, что изготовленные из них инструменты могут работать при больших скоростях резания, не теряя своих свойств. Замечательное свойство быстрорежущих сталей – высокая красностойкость, т. е. способность сохранять высокую твердость и режущую способность при нагревании до 600–650 °C. Красностойкость определяется в основном двумя факторами: химическим составом и термической обработкой. Быстрорежущие стали имеют сложный химический состав. Наиболее важным легирующим элементом их является вольфрам (6—18 %), а также ванадий (1–5 %). Кроме того, во все быстрорежущие стали входит хром (3–4,5 %), большая часть которого растворяется в кристаллической решетке железа. Для того чтобы придать быстрорежущим сталям высокие режущие свойства, их подвергают термической обработке по специальному режиму. Стандартом предусмотрен выпуск 14 марок быстрорежущих сталей, которые условно подразделяются на две группы: первая группа – стали, не содержащие кобальта, вторая группа – стали, содержащие повышенное количество кобальта и ванадия. Марки быстрорежущих сталей – Р18, Р12, Р9, Р6М3, Р9К5.

Источник: www.libma.ru

Термическая обработка стали

Термическая обработка стали позволяет придать изделиям, деталям и заготовкам требуемые качества и характеристики. В зависимости от того, на каком этапе в технологическом процессе изготовления проводилась термическая обработка, у заготовок повышается обрабатываемость, с деталей снимаются остаточные напряжения, а у деталей повышаются эксплуатационные качества.

Технология термической обработки стали – это совокупность процессов: нагревания, выдерживания и охлаждения с целью изменения внутренней структуры металла или сплава. При этом химический состав не изменяется.

Так, молекулярная решетка углеродистой стали при температуре не более 910°С представляет из себя куб объемно-центрированный. При нагревании свыше 910°С до 1400°С решетка принимает форму гране-центрированного куба. Дальнейший нагрев превращает куб в объемно-центрированный.

Сущность термической обработки сталей – это изменение размера зерна внутренней структуры стали. Строгое соблюдение температурного режима, времени и скорости на всех этапах, которые напрямую зависят от количества углерода, легирующих элементов и примесей, снижающих качество материала. Во время нагрева происходят структурные изменения, которые при охлаждении протекают в обратной последовательности. На рисунке видно, какие превращения происходят во время термической обработки.

Изменение структуры металла при термообработке

Назначение термической обработки

Термическая обработка стали проводится при температурах, приближенных к критическим точкам . Здесь происходит:

  • вторичная кристаллизация сплава;
  • переход гамма железа в состояние альфа железа;
  • переход крупных частиц в пластинки.

Внутренняя структура двухфазной смеси напрямую влияет на эксплуатационные качества и легкость обработки.

Образование структур в зависимости от интенсивности охлаждения

Основное назначение термической обработки — это придание сталям:

  • В готовых изделиях:
    1. прочности;
    2. износостойкости;
    3. коррозионностойкость;
    4. термостойкости.
  • В заготовках:
    1. снятие внутренних напряжений после
      • литья;
      • штамповки (горячей, холодной);
      • глубокой вытяжки;
    2. увеличение пластичности;
    3. облегчение обработки резанием.

Термическая обработка применяется к следующим типам сталей:

  1. Углеродистым и легированным.
  2. С различным содержанием углерода, от низкоуглеродистых 0,25% до высокоуглеродистых 0,7%.
  3. Конструкционным, специальным, инструментальным.
  4. Любого качества.

Классификация и виды термообработки

Основополагающими параметрами, влияющими на качество термообработки являются:

  • время нагревания (скорость);
  • температура нагревания;
  • длительность выдерживания при заданной температуре;
  • время охлаждения (интенсивность).

Изменяя данные режимы можно получить несколько видов термообработки.

Виды термической обработки стали:

  • Отжиг
    1. I – рода:
      • гомогенизация;
      • рекристаллизация;
      • изотермический;
      • снятие внутренних и остаточных напряжений;
    2. II – рода:
      • полный;
      • неполный;
  • Закалка;
  • Отпуск:
    1. низкий;
    2. средний;
    3. высокий.
  • Нормализация.

Температура нагрева стали при термообработке

Отпуск в машиностроении используется для уменьшения силы внутренних напряжений, которые появляются во время закалки. Высокая твердость делает изделия хрупкими, поэтому отпуском добиваются увеличения ударной вязкости и снижения жесткости и хрупкости стали.

1. Отпуск низкий

Для низкого отпуска характерна внутренняя структура мартенсита, которая, не снижая твердости повышает вязкость. Данной термообработке подвергаются измерительный и режущий инструмент. Режимы обработки:

  • Нагревание до температуры – от 150°С, но не выше 250°С;
  • выдерживание — полтора часа;
  • остывание – воздух, масло.

2. Средний отпуск

Для среднего отпуска преобразование мартенсита в тростит. Твердость снижается до 400 НВ. Вязкость возрастает. Данному отпуску подвергаются детали, работающие со значительными упругими нагрузками. Режимы обработки:

  • нагревание до температуры – от 340°С, но не выше 500°С;
  • охлаждение – воздух.

3. Высокий отпуск

При высоком отпуске кристаллизуется сорбит, который ликвидирует напряжения в кристаллической решетке. Изготавливаются ответственные детали, обладающие прочностью, пластичностью, вязкостью.

Нагревание до температуры – от 450°С, но не выше 650°С.

Применение отжига позволяет получить однородную внутреннюю структуру без напряжений кристаллической решетки. Процесс проводят в следующей последовательности:

  • нагревание до температуры чуть выше критической точки в зависимости от марки стали;
  • выдержка с постоянным поддержанием температуры;
  • медленное охлаждение (обычно остывание происходит совместно с печью).

1. Гомогенизация

Гомогенизация, по-иному отжиг диффузионный, восстанавливает неоднородную ликвацию отливок. Режимы обработки:

  • нагревание до температуры – от 1000°С, но не выше 1150°С;
  • выдержка – 8-15 часов;
  • охлаждение:
    • печь – до 8 часов, снижение температуры до 800°С;
    • воздух.

2. Рекристаллизация

Рекристаллизация, по-иному низкий отжиг, используется после обработки пластическим деформированием, которое вызывает упрочнение за счет изменения формы зерна (наклеп). Режимы обработки:

  • нагревание до температуры – выше точки кристаллизации на 100°С-200°С;
  • выдерживание — ½ — 2 часа;
  • остывание – медленное.

3. Изотермический отжиг

Изотермическому отжигу подвергаются легированные стали, для того чтобы произошел распад аустенита. Режимы термообработки:

  • нагревание до температуры – на 20°С — 30°С выше точки ;
  • выдерживание;
  • остывание:
    • быстрое – не ниже 630°С;
    • медленное – при положительных температурах.

4. Отжиг для устранения напряжений

Снятие внутренних и остаточных напряжений отжигом используется после сварочных работ, литья, механической обработки. С наложением рабочих нагрузок детали подвергаются разрушению. Режимы обработки:

  • нагревание до температуры – 727°С;
  • выдерживание – до 20 часов при температуре 600°С — 700°С;
  • остывание — медленное.

5. Отжиг полный

Отжиг полный позволяет получить внутреннюю структуру с мелким зерном, в составе которой феррит с перлитом. Полный отжиг используют для литых, кованных и штампованных заготовок, которые будут в дальнейшем обрабатываться резанием и подвергаться закалке.

Полный отжиг стали

  • температура нагрева – на 30°С-50°С выше точки ;
  • выдержка;
  • охлаждение до 500°С:
    • сталь углеродистая – снижение температуры за час не более 150°С;
    • сталь легированная – снижение температуры за час не более 50°С.

6. Неполный отжиг

При неполном отжиге пластинчатый или грубый перлит преобразуется в ферритно-цементитную зернистую структуру, что необходимо для швов, полученных электродуговой сваркой, а также инструментальные стали и стальные детали, подвергшиеся таким методам обработки, температура которых не провоцирует рост зерна внутренней структуры.

  • нагревание до температуры – выше точки или , выше 700°С на 40°С — 50°С;
  • выдерживание – порядка 20 часов;
  • охлаждение — медленное.

Закалку сталей применяют для:

  • Повышения:
    1. твердости;
    2. прочности;
    3. износоустойчивости;
    4. предела упругости;
  • Снижения:
    1. пластичности;
    2. модуля сдвига;
    3. предела на сжатие.

Суть закалки – это максимально быстрое охлаждение прогретой насквозь детали в различных средах. Каление производится с полиморфными изменениями и без них. Полиморфные изменения возможны только в тех сталях, в которых присутствуют элементы способные к преобразованию.

Такой сплав подвергается нагреву до той температуры, при которой кристаллическая решетка полиморфного элемента терпит изменения, за счет чего увеличивается растворяемость легирующих материалов. При снижении температуры решетка изменяет структуру из-за избытка легирующего элемента и принимает игольчатую структуру.

Невозможность полиморфных изменений при калении обусловлено ограниченной растворимостью одного компонента в другом при быстрой скорости охлаждения. Для диффузии мало времени. В итоге получается раствор с избытком нерастворенного компонента (метастабильтный).

Для увеличения скорости охлаждения стали используются такие среды как:

  • вода;
  • соляные растворы на основе воды;
  • техническое масло;
  • инертные газы.

Сравнивая скоростной режим охлаждения стальных изделий на воздухе, то охлаждение в воде с 600°С происходит в шесть раз быстрее, а с 200°С в масле в 28 раз. Растворенные соли повышают закаливающую способность. Недостатком использования воды считается появление трещин в местах образования мартенсита. Техническое масло используется для закалки легирующих сплавов, но оно пригорает к поверхности.

Металлы, использующиеся при изготовлении изделий медицинской направленности не должны иметь пленки из оксидов, поэтому охлаждение происходит в среде разряженного воздуха.

Чтобы полностью избавиться от аустенита, из-за которого у стали наблюдается высокая хрупкость, изделия подвергаются дополнительному охлаждению при температурах от — 40°С и до -100°С в специальной камере. Также можно использовать углекислую кислоту в смеси с ацетоном. Такая обработка повышает точность деталей, их твердость, магнитные свойства.

Если деталям не требуется объемная термообработка, проводится каление только поверхностного слоя на установках ТВЧ (токами высокой частоты). При этом глубина термообработки составляет от 1 мм до 10 мм, а охлаждение происходит на воздухе. В итоге поверхностный слой становится износоустойчивым, а середина вязкая.

Процесс закалки предполагает прогревание и выдержку стальных изделий при температуре, достигающей порядка 900°С. При такой температуре стали с содержанием углерода до 0,7% имеют структуру мартенсита, который при последующей термообработке перейдет в требуемую структуру с появлением нужных качеств.

Нормализация

Нормализация формирует структуру с мелким зерном. Для низкоуглеродистых сталей — это структура феррит-перлит, для легированных – сорбитоподобная. Получаемая твердость не превышает 300 НВ. Нормализации подвергаются горячекатаные стали. При этом у них увеличивается:

  • сопротивление излому;
  • производительность обработки;
  • прочность;
  • вязкость.

Процесс нормализации стали

  • происходит нагрев до температуры – на 30°С-50°С выше точки ;
  • выдерживание в данном температурном коридоре;
  • охлаждение – на открытом воздухе.

Преимущества термообработки

Термообработка стали – это технологический процесс, который стал обязательным этапом получения комплектов деталей из стали и сплавов с заданными качествами. Этого позволяет добиться большое разнообразие режимов и способов термического воздействия. Термообработку используют не только применительно к сталям, но и к цветным металлам и сплавам на их основе.

Стали без термообработки используются лишь для возведения металлоконструкций и изготовления неответственных деталей, срок службы которых невелик. К ним не предъявляются дополнительные требования. Повседневная же эксплуатация наоборот диктует ужесточение требований, именно поэтому применение термообработки предпочтительно.

В термически необработанных сталях абразивный износ высок и пропорционален собственной твердости, которая зависит от состава химических элементов. Так, незакаленные матрицы штампов хорошо сочетаются при работе с калеными пуансонами.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: stankiexpert.ru

Классификация сталей. Термическая обработка сталей.

Идёт приём заявок

Подать заявку

Для учеников 1-11 классов и дошкольников

Описание презентации по отдельным слайдам:

Разработала учитель технологии Панфилова Ольга Владимировна МБОУ ЯСШ №7

сталь углеродистая легированная СТАЛЬ- ЭТО СПЛАВ ЖЕЛЕЗА С УГЛЕРОДОМ И ДРУГИМИ ХИМИЧЕСКИМИ ЭЛЕМЕНТАМИ По применению стали делятся конструкционная инструментальная

Углеродистая сталь в зависимости от содержания в ней углерода подразделяется: — на обыкновенную — качественную — инструментальную

Сталь обыкновенного качества обозначается буквами и цифрами СТ0, СТ1…СТ6 Из таких сталей изготавливают гайки, болты, заклепки трубы, листовой прокат и другие предметы

Качественная сталь обозначается двумя цифрами 05, 08, 10, 20 … Цифры показывают содержания углерода в сотых долях процента. Из таких сталей изготавливают зубчатые колеса, валы, оси, шкивы и другие детали

Инструментальная сталь Обозначается У10, У11…. обладает большой прочностью и твердостью. Из такой стали изготавливают зубила, молотки, ножницы по металлу, напильники.

Легированная сталь Отличается от углеродистой тем, что при плавке в нее добавляют: Х-хром, Н-никель, В-вольфрам, Ф-ванадий, М-молибден. Эти элементы придают стали прочность, твердость, упругость, антикоррозийную прочность.

Легированные стали различают по цели: на конструкционные, предназначенные для изготовления пружин, рессор.

инструментальные, предназначенные для изготовления фрез, плашек, метчиков, свёрл и пр.

Для изменения свойств сталей применяется термообработка Термообработка- это нагрев стали до определенной температуры, выдержка и охлаждение. Виды термообработки: отпуск закалка отжиг

закалка — это нагрев металла до определенной температуры, выдержка при этой температуре и быстрое охлаждение в воде, масле или специальных растворах. Закалка повышает твердость, прочность металла, но в то же время повышает его хрупкость.

Цвета каления при закалке заготовок Цвета каления Температура, 0С Цвета каления Температура, 0С Темно-коричневый 530-580 Красный 830-900 Коричнево-красный 580-650 Светло-красный 900-1050 Темно-вишневый 650-720 Желтый 1050-1150 Вишневый 720-780 Светло-желтый 1150-1250 Светло-вишневый 780-830 Белый 1250-1300

отпуск -это нагрев металла до 400-500 0С и охлаждение в воде или на воздухе. Отпуск позволяет снизить хрупкость и увеличить пластичность.

отжиг — это нагрев до определённой температуры, выдержка и медленное охлаждение. Отжиг резко снижает твёрдость стали – она становится мягче и лучше обрабатывается.

прокат На металлургических заводах отливкам металла придают определенную форму, то есть выпускают материал различного профиля: в виде листов, рельсов, балок. Готовая продукция различного профиля называется прокатом

На предприятиях термическую обработку материалов выполняют рабочие-термисты

Спасибо за внимание!

«творческая работа с детьми от 3 до 10 лет»

  • Панфилова Ольга ВладимировнаНаписать 297 17.03.2018

Номер материала: ДБ-1332059

ВНИМАНИЮ УЧИТЕЛЕЙ: хотите организовать и вести кружок по ментальной арифметике в своей школе? Спрос на данную методику постоянно растёт, а Вам для её освоения достаточно будет пройти один курс повышения квалификации (72 часа) прямо в Вашем личном кабинете на сайте «Инфоурок».

Пройдя курс Вы получите:
— Удостоверение о повышении квалификации;
— Подробный план уроков (150 стр.);
— Задачник для обучающихся (83 стр.);
— Вводную тетрадь «Знакомство со счетами и правилами»;
— БЕСПЛАТНЫЙ доступ к CRM-системе, Личному кабинету для проведения занятий;
— Возможность дополнительного источника дохода (до 60.000 руб. в месяц)!

Пройдите дистанционный курс «Ментальная арифметика» на проекте «Инфоурок»!

    17.03.2018 178
    17.03.2018 607
    17.03.2018 101
    17.03.2018 256
    17.03.2018 1474
    17.03.2018 293
    17.03.2018 136
    17.03.2018 171

Не нашли то что искали?

«творческая работа с детьми от 3 до 10 лет»

Вам будут интересны эти курсы:

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Источник: infourok.ru

Читать еще:  Лучшие производители розеток и выключателей
Ссылка на основную публикацию
Adblock
detector