Кинетическая и потенциальная энергия пружинного маятника

07.06.2019

5 июня Что порешать по физике

30 мая Решения вчерашних ЕГЭ по математике

Груз изображённого на рисунке пружинного маятника совершает гармонические колебания между точками 1 и 3. Как меняется потенциальная энергия пружины маятника, кинетическая энергия груза и жёсткость пружины при движении груза маятника от точки 2 к точке 1?

Для каждой величины определите соответствующий характер её изменения:

3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Потенциальная энергия

пружины маятника

Кинетическая энергия

груза

Жесткость пружины

Точка 2 представляет собой положение устойчивого равновесия маятника. Когда груз находится в точке 2, пружина не деформирована. Точка 1, напротив, соответствует сжатой пружине. При движении груза от точки 2, в которой он имеет максимальную скорость, к точке 1 пружина сжимается, замедляя груз. При этом потенциальная энергия пружины увеличивается, а кинетическая энергия груза уменьшается

Жесткость пружины является характеристикой пружины, не зависящей от фазы колебания, поэтому жесткость пружины не изменяется.

Источник: phys-ege.sdamgia.ru

Кинетическая и потенциальная энергия пружинного маятника

При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот .

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине (см. §2.2):

Для малых колебаний математического маятника (см. §2.3):

Здесь m – максимальная высота подъема маятника в поле тяготения Земли, m и m = m – максимальные значения отклонения маятника от положения равновесия и его скорости.

Превращения энергии при свободных механических колебаниях в отсутствие трения можно проиллюстрировать графически. Рассмотрим в качестве примера колебания груза массой на пружине жесткости . Пусть смещение груза из положения равновесия и его скорость изменяются со временем по законам:

m sin .

Следовательно,

На рис. 2.4.1 изображены графики функций p(t) и k(t) . Потенциальная и кинетическая энергии за период колебаний два раза достигают максимальных значений. Сумма остается неизменной.

Рисунок 2.4.1.

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими (рис. 2.4.2).

Рисунок 2.4.2.

Скорость затухания колебаний зависит от величины сил трения. Интервал времени , в течении которого амплитуда колебаний уменьшается в раз, называется временем затухания .

Частота свободных колебаний зависит от скорости их затухания. При возрастании сил трения собственная частота уменьшается. Однако, изменение собственной частоты становится заметным лишь при достаточно больших силах трения, когда собственные колебания затухают быстро.

Важной характеристикой колебательной системы, совершающей свободные затухающие колебания, является добротность . Этот параметр определяется как число полных колебаний, совершаемых системой за время затухания , умноженное на :

Чем медленнее происходит затухание свободных колебаний, тем выше добротность колебательной системы. Добротность колебательной системы, определенная по затуханию колебаний на рис. 2.4.2, приблизительно равна .

Добротности механических колебательных систем могут быть очень высокими – порядка нескольких сотен и даже тысяч.

Понятие добротности имеет глубокий энергетический смысл. Можно определить добротность колебательной системы следующим энергетическим соотношением:

Таким образом, добротность характеризует относительную убыль энергии колебательной системы из-за наличия трения на интервале времени, равном одному периоду колебаний.

Источник: physics.ru

Пружинный и математический маятник

Примерами гармонических колебаний служат колебания пружинного и математического маятников.

Пружинный маятник — тело массой т, колеблющееся на упругой пружине (рис. 5.5) и совершающее гармонические колебания под воздействием упругой силы:

где к — жесткость пружины.

Закон движения пружинного маятника:

где а — угол отклонения маятника от положения равновесия; а — амплитуда колебаний (максимальное значение угла отклонения).

При последовательном соединении пружин (рис. 5.5, б) общий коэффициент жесткости

При параллельном соединении пружин общий коэффициент жесткости (рис. 5.5, в)

Круговая (циклическая) частота:

Кинетическая энергия пружинного маятника:

Потенциальная энергия пружинного маятника:

Полная энергия пружинного маятника:

На рис. 5.6, а представлен график зависимости потенциальной энергии Еп пружинного маятника от деформации х, где Е — полная энергия (прямая горизонтальная линия), кинетическая Ек и потенциальная Еп энергии заданы соответствующими отрезками ординат. Из рисунка следует, что с возрастанием деформации х потенциальная энергия маятника возрастает, кинетическая — уменьшается (и наоборот). В отсутствие трения полная энергия тела сохраняется (Е = Ек + Еи) при любых значениях х

Графические зависимости кинетической Ек, потенциальной Еп и полной энергий Е упругой деформации тел от времени t показаны на рис. 5.6, б.

Математический маятник — материальная точка массой т, подвешенная на невесомой нерастяжимой нити длиной I и колеблющаяся под действием силы тяжести (рис. 5.7).

Круговая (циклическая) частота:

Период и частота колебания математического маятника:

Если маятник движется вниз с ускорением а (или вверх с замедлением а), его период

Если маятник движется вверх с ускорением а (или вниз с замедлением а), его период

Если маятник движется с ускорением а в горизонтальном направлении, его период

Кинетическая энергия математического маятника:

Потенциальная энергия математического маятника:

Превращение энергии при гармонических колебаниях происходит в соответствии с законом сохранения энергии в консервативной системе:

При движении пружинного маятника от положения равновесия его потенциальная энергия увеличивается, а кинетическая уменьшается (см. рис. 5.6, а). Когда маятник проходит положение равновесия (? = 0), его потенциальная энергия равна нулю, а кинетическая энергия маятника максимальна и равна полной энергии. В состоянии максимального отклонения от положения равновесия скорость маятника равна нулю, следовательно, равна нулю и кинетическая энергия, а потенциальная — максимальна и равна полной энергии. Следовательно, в момент максимального отклонения и когда маятник проходит положение равновесия имеет место:

Приведенные сведения об энергии колебаний пружинного маятника имеют общее значение и справедливы для свободных гармонических незатухающих колебаний в любой колебательной системе.

Вынужденные колебания — колебания, происходящие под действием внешней, периодически действующей силы.

Вынужденные колебания совершают, например, игла швейной машины, нож электробритвы, поршень в цилиндре двигателя внутреннего сгорания и др.

Вынуждающая сила — сила, вызывающая вынужденные колебания.

Если вынуждающая сила меняется гармонически по закону F = Fmaxcos(ot (Fmax — амплитуда вынуждающей силы, со — ее циклическая частота), то в колебательной системе, на которую действует эта сила, через определенное время (соответствует переходному режиму) устанавливаются гармонические вынужденные колебания с частотой, равной частоте со вынуждающей силы (рис. 5.8).

Уравнение вынужденных колебаний:

где А — амплитуда вынужденных колебаний; ю — циклическая частота свободных незатухающих колебаний системы; ср — разность фаз между смещением х и вынуждающей силой F. Амплитуда установившихся вынужденных колебаний:

где Fmax — амплитуда вынуждающей силы; т — масса колеблющейся системы; со — циклическая частота внешней силы; г —

коэффициент сопротивления; (3 =—коэффициент затуха-

Для вынужденных колебаний характерно явление резонанса.

Разность фаз между смещением и вынуждающей силой:

Резонанс — явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте ш колебаний системы. Соответственно величина а>рсз называется резонансной циклической частотой, а кривые зависимости А от оз — резонансными кривыми (рис. 5.9).

Резонансная циклическая частота и резонансная амплитуда:

Возрастание амплитуды вынужденных колебаний при резонансе выражено тем отчетливее, чем меньше трение в системе (Р —*? 0). На практике амплитуда А в точке со конечна за счет сопротивления среды (р| > р2 > Ро), поэтому с ростом резонансная частота сдвигается в сторону меньших частот, а резонансная амплитуда — понижается (Арез1

Источник: studme.org

Механические колебания. Пружинный маятник

Механическими колебаниями называются движения, характеризующиеся определенной повторяемостью во времени.

Колебания называются свободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему.

Гармоническими называются колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (или косинуса).

Пружинный маятник – это колебательная система, состоящая из груза массой т, закрепленного на пружине, совершающая гармонические колебания под действием упругой силы , зависящей от величины линейной деформации x по закону Гука (Fx = – kx, где k – жесткость пружины.

Согласно второму закону Ньютона уравнение движения маятника:

.

Так как ускорение a является второй производной от смещения x (), то

или .

Если обозначить , то получим дифференциальное уравнение свободных незатухающих гармонических колебаний пружинного маятника:

.

Решением этого дифференциального уравнения является функция x(t):

,

где отклонение тела от положения равновесия в момент времени t;

А – амплитуда колебания, то есть максимальное отклонение колеблющегося тела от положения равновесия;

wкруговая (циклическая) частота;

j начальная фаза колебания.

Круговая частота , где Т – период колебаний: .

Кинетическая энергия колебаний пружинного маятника:

.

Потенциальная энергия колебаний пружинного маятника:

.

Полная энергия колебаний пружинного маятника:

,

откуда видно, что полная энергия свободных незатухающих гармонических колебаний пружинного маятника остается со временем постоянной.

Свободные затухающие гармонические колебания пружинного маятника (рис. 6). Для пружинного маятника массой т, совершающего колебания под действием упругой силы (Fx = – kx)с учетомсилы сопротивления , пропорциональной скорости движения груза (), второй закон Ньютона имеет вид:

,

где rкоэффициент сопротивления.

Обозначив и ( коэффициент затухания), получим дифференциальное уравнение свободных затухающих гармонических колебаний пружинного маятника:

.

Решением этого дифференциального уравнения в случае малых затуханий

является функция x(t):

,

где амплитуда затухающих колебаний в момент времени t;

начальная амплитуда, т.е. амплитуда в момент времени t = 0,

круговая (циклическая) частота:

Период затухающих гармонических колебаний пружинного маятника:

.

Декремент затухания. Если A(tА(t+Т) амплитуды двух последовательных колебаний (рис. 6), то отношение этих величин называется декрементом затухания .

Логарифм называется логарифмическим декрементом затухания :

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8778 — | 7508 — или читать все.

188.64.173.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник: studopedia.ru

Формулы пружинного маятника

Определение и формулы пружинного маятника

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

где $<щu>^2_0=frac$ — циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:

где $_0=sqrt>>0$- циклическая частота колебаний маятника, $A$ — амплитуда колебаний; $<(omega >_0t+varphi )$ — фаза колебаний; $varphi $ и $_1$ — начальные фазы колебаний.

В экспоненциальном виде колебания пружинного маятника можно записать как:

[Re tilde=Releft(Acdot exp left(ileft(_0t+varphi right)right)right)left(3right).]

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

Так как частота колебаний ($nu $) — величина обратная к периоду, то:

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($varphi $).

Амплитуду можно найти как:

начальная фаза при этом:

где $v_0$ — скорость груза при $t=0 c$, когда координата груза равна $x_0$.

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

учитывая, что для пружинного маятника $F=-kx$,

тогда потенциальная энергия ($E_p$) пружинного маятника равна:

Закон сохранения энергии для пружинного маятника запишем как:

где $dot=v$ — скорость движения груза; $E_k=frac>^2><2>$ — кинетическая энергия маятника.

Из формулы (10) можно сделать следующие выводы:

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Примеры задач с решением

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600 frac<Н><м>$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1 frac<м><с>$?

Решение. Сделаем рисунок.

По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:

где $E_$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_$ — кинетическая энергия шарика, в момент прохождения положения равновесия.

Потенциальная энергия равна:

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

Из (1.4) выразим искомую величину:

Вычислим начальное (максимальное) смещение груза от положения равновесия:

Ответ. $x_0=1,5$ мм

Задание. Пружинный маятник совершает колебания по закону: $x=A $где $A$ и $omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_$. В какой момент времени это произойдет?

Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

Потенциальную энергию колебаний груза найдем как:

В момент времени, который следует найти $F=F_0$; $E_p=E_$, значит:

Источник: www.webmath.ru

Читать еще:  Чем очистить латунь до блеска
Ссылка на основную публикацию
Adblock
detector