Кинетическая энергия груза на пружине формула

Кинетическая энергия груза на пружине формула

Определение и формулы пружинного маятника

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

где $<щu>^2_0=frac$ — циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:

где $_0=sqrt>>0$- циклическая частота колебаний маятника, $A$ — амплитуда колебаний; $<(omega >_0t+varphi )$ — фаза колебаний; $varphi $ и $_1$ — начальные фазы колебаний.

В экспоненциальном виде колебания пружинного маятника можно записать как:

[Re tilde=Releft(Acdot exp left(ileft(_0t+varphi right)right)right)left(3right).]

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

Так как частота колебаний ($nu $) — величина обратная к периоду, то:

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($varphi $).

Амплитуду можно найти как:

начальная фаза при этом:

где $v_0$ — скорость груза при $t=0 c$, когда координата груза равна $x_0$.

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

учитывая, что для пружинного маятника $F=-kx$,

тогда потенциальная энергия ($E_p$) пружинного маятника равна:

Закон сохранения энергии для пружинного маятника запишем как:

где $dot=v$ — скорость движения груза; $E_k=frac>^2><2>$ — кинетическая энергия маятника.

Из формулы (10) можно сделать следующие выводы:

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Примеры задач с решением

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600 frac<Н><м>$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1 frac<м><с>$?

Решение. Сделаем рисунок.

По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:

где $E_$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_$ — кинетическая энергия шарика, в момент прохождения положения равновесия.

Потенциальная энергия равна:

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

Из (1.4) выразим искомую величину:

Вычислим начальное (максимальное) смещение груза от положения равновесия:

Ответ. $x_0=1,5$ мм

Задание. Пружинный маятник совершает колебания по закону: $x=A $где $A$ и $omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_$. В какой момент времени это произойдет?

Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

Потенциальную энергию колебаний груза найдем как:

В момент времени, который следует найти $F=F_0$; $E_p=E_$, значит:

Источник: www.webmath.ru

Кинетическая энергия пружины

Пружину можно назвать довольно распространенным изделием, которое применяется в самых различных случаях. Для правильного выбора пружины уделяется внимание проведению различных расчетов, некоторые из них предусматривает вычисление основных параметров, характеризующих работу. Потенциальная и кинетическая сила – два довольно распространенных показателя, которые касаются не только пружины, но и многих других тел. Рассмотрим особенности кинетической подробнее.

Читать еще:  Электропистолет для забивания гвоздей

Понятие энергии

Прежде чем рассматривать особенности пружины следует уделить внимание тому, что с ней происходит при сжатии, растяжении и каким образом она оказывает воздействие на тело, окружающую систему. Энергия – скалярная физическая величина, которая применяется для определения формы движения и взаимодействия материи. Важным моментом назовем то, что если система замкнутая, то усилие сохраняется на протяжении длительного периода. Сегодня она окружает нас практически везде и касается довольно большого количества объектов.

Довольно большое распространение получило понятие кинетическая энергия пружины. Она связано с непосредственными особенностями самого изделия. При воздействии определенного усилия на витки, расположенные вдоль одной спирали, формируется сила, которая может использоваться в качестве полезной работы.

Энергия кинетическая: формула и определение

Механическая система, которая связана со скоростью перемещения объекта, применяется крайне часто. Стоит учитывать, что она может делиться на поступательную и вращательную. В качестве единицы измерения используется джоуль.

Среди особенностей отметим нижеприведенные моменты:

  1. Рассматриваемый тип усилия также представлен разностью между исходным состоянием тела и его положением в полном спокойствии.
  2. Обуславливается возникновение определенного усилия, за счет которого обеспечивается перемещение тела и совершение работы.

Пружина за счет силы упругости приводит в движение различные объекты. При этом жесткость пружины растянутой может быть различной, все зависит от особенностей конкретного изделия.

Рассматриваемая формулу следует уделить внимание достаточно большому количеству различных моментов. Особенностями назовем следующее:

  1. Упругость зависит от количества витков, толщины применяемой проволоки и типа применяемого материала при изготовлении. Кроме этого, уделяется внимание взаимному расположению витков.
  2. Работа, которая может совершаться пружиной, зависит от взаимного положения частей тела. Начальное и конечное растяжение может существенно отличаться.
  3. Рассматриваемое изделие в растянутом положении может совершать различную работу. Расчеты позволяют определить то, каково ее значение, а также величину потенциальной.

Расчеты могут проводится исключительно после создания схемы. Примером назовем следующее:

  1. Один конец витков закреплен за основание, второй предназначен для совершения работы.
  2. Не стоит забывать о том, что показатель изменяется, он не остается постоянным. Изменения пропорционально растяжению.
  3. Изначальное растяжение обозначается буквой l, для определения первоначального значение силу упругости применяется формула F=kl. В данной формуле используется коэффициент k, который обозначает жесткость.

Приведенная выше информация указывает на то, что провести расчет требуемого показателя проводится следующим образом: E=kl 2 /2. В этом случае величина во многом зависит от удлинения и коэффициента жесткости.

Изменение кинетической энергии

Приведенная выше информация указывает на то, что рассматриваемое значение не имеет постоянный показатель. Среди особенностей отметим:

  1. Наибольшее значение характерно максимальному удлинению витков относительно друга друга. При этом не стоит забывать о том, что есть определенное ограничение, касающееся максимального удлинения, так как слишком большая нагрузка становится причиной деформации.
  2. При приближении тела к точке равновесия оно снижается. Это связано с тем, что показатель упругости существенно снижается.

Кроме этого, параметр зависит от воздействия других сил. Примером можно назвать трение, которая снижает скорость перемещения объекта.

Средняя кинетическая энергия

В большинстве случаев проводится высчитывание среднего значения. Этот показатель не учитывает то, в каких положениях сила упругости высокая и низкая. Для расчета применяется формула: F=kl/2.

В данном случае достаточно знать лишь удлинение, которое измеряется при использовании обычного инструмента. Что касается коэффициента, то он может варьировать в достаточно большом диапазоне, зависит от следующих моментов:

  1. Диаметра витков. С увеличением этого показателя существенно повышается коэффициент жесткости, изделие часто используется для выполнения большой работы.
  2. Толщины применяемой проволоки. Рассматриваемое изделие представлено проволокой, которая накручивается вокруг установленной оси.
  3. Расстояния между отдельными витками. Как правило, они расположены относительно друг друга на определенном расстоянии, которое одинаковое. По этому признаку выделяют варианты исполнения, предназначенные для сжатия и растяжения.
  4. Типа применяемого материала при изготовлении. Некоторые сплавы характеризуются достаточно высокой жесткостью, могут переносить незначительную деформацию.

Коэффициент самостоятельно рассчитать не нужно, он берется с определенных таблиц. Среднее значение часто высчитывается в случае решения математических задач, при проектировании применяются другие формулы.

Связь между внутренней энергией тела кинетической и потенциальной энергиями

Между кинетической и потенциальными понятиями есть определенная взаимосвязь. Для расчета подобной связи используется следующая формула: А=Fs=mav 2 2-v 2 1/2a.

Читать еще:  Беспроводной звонок на дверь в квартиру

Оба значения применяются в качестве полезного действия, могут варьировать в достаточно большом диапазоне, а также зависеть от различных факторов.

В заключение отметим, что проводимые расчеты позволяют выбрать наиболее подходящий вариант исполнения изделия для конкретного механизма. При исследовании проводится отображение схемы, на которой можно увидеть распространение всех сил.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: stankiexpert.ru

Пружинный и математический маятник

Примерами гармонических колебаний служат колебания пружинного и математического маятников.

Пружинный маятник — тело массой т, колеблющееся на упругой пружине (рис. 5.5) и совершающее гармонические колебания под воздействием упругой силы:

где к — жесткость пружины.

Закон движения пружинного маятника:

где а — угол отклонения маятника от положения равновесия; а — амплитуда колебаний (максимальное значение угла отклонения).

При последовательном соединении пружин (рис. 5.5, б) общий коэффициент жесткости

При параллельном соединении пружин общий коэффициент жесткости (рис. 5.5, в)

Круговая (циклическая) частота:

Кинетическая энергия пружинного маятника:

Потенциальная энергия пружинного маятника:

Полная энергия пружинного маятника:

На рис. 5.6, а представлен график зависимости потенциальной энергии Еп пружинного маятника от деформации х, где Е — полная энергия (прямая горизонтальная линия), кинетическая Ек и потенциальная Еп энергии заданы соответствующими отрезками ординат. Из рисунка следует, что с возрастанием деформации х потенциальная энергия маятника возрастает, кинетическая — уменьшается (и наоборот). В отсутствие трения полная энергия тела сохраняется (Е = Ек + Еи) при любых значениях х

Графические зависимости кинетической Ек, потенциальной Еп и полной энергий Е упругой деформации тел от времени t показаны на рис. 5.6, б.

Математический маятник — материальная точка массой т, подвешенная на невесомой нерастяжимой нити длиной I и колеблющаяся под действием силы тяжести (рис. 5.7).

Круговая (циклическая) частота:

Период и частота колебания математического маятника:

Если маятник движется вниз с ускорением а (или вверх с замедлением а), его период

Если маятник движется вверх с ускорением а (или вниз с замедлением а), его период

Если маятник движется с ускорением а в горизонтальном направлении, его период

Кинетическая энергия математического маятника:

Потенциальная энергия математического маятника:

Превращение энергии при гармонических колебаниях происходит в соответствии с законом сохранения энергии в консервативной системе:

При движении пружинного маятника от положения равновесия его потенциальная энергия увеличивается, а кинетическая уменьшается (см. рис. 5.6, а). Когда маятник проходит положение равновесия (? = 0), его потенциальная энергия равна нулю, а кинетическая энергия маятника максимальна и равна полной энергии. В состоянии максимального отклонения от положения равновесия скорость маятника равна нулю, следовательно, равна нулю и кинетическая энергия, а потенциальная — максимальна и равна полной энергии. Следовательно, в момент максимального отклонения и когда маятник проходит положение равновесия имеет место:

Приведенные сведения об энергии колебаний пружинного маятника имеют общее значение и справедливы для свободных гармонических незатухающих колебаний в любой колебательной системе.

Вынужденные колебания — колебания, происходящие под действием внешней, периодически действующей силы.

Вынужденные колебания совершают, например, игла швейной машины, нож электробритвы, поршень в цилиндре двигателя внутреннего сгорания и др.

Вынуждающая сила — сила, вызывающая вынужденные колебания.

Если вынуждающая сила меняется гармонически по закону F = Fmaxcos(ot (Fmax — амплитуда вынуждающей силы, со — ее циклическая частота), то в колебательной системе, на которую действует эта сила, через определенное время (соответствует переходному режиму) устанавливаются гармонические вынужденные колебания с частотой, равной частоте со вынуждающей силы (рис. 5.8).

Уравнение вынужденных колебаний:

где А — амплитуда вынужденных колебаний; ю — циклическая частота свободных незатухающих колебаний системы; ср — разность фаз между смещением х и вынуждающей силой F. Амплитуда установившихся вынужденных колебаний:

где Fmax — амплитуда вынуждающей силы; т — масса колеблющейся системы; со — циклическая частота внешней силы; г —

коэффициент сопротивления; (3 =—коэффициент затуха-

Для вынужденных колебаний характерно явление резонанса.

Разность фаз между смещением и вынуждающей силой:

Читать еще:  Для чего нужен аэрограф

Резонанс — явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте ш колебаний системы. Соответственно величина а>рсз называется резонансной циклической частотой, а кривые зависимости А от оз — резонансными кривыми (рис. 5.9).

Резонансная циклическая частота и резонансная амплитуда:

Возрастание амплитуды вынужденных колебаний при резонансе выражено тем отчетливее, чем меньше трение в системе (Р —*? 0). На практике амплитуда А в точке со конечна за счет сопротивления среды (р| > р2 > Ро), поэтому с ростом резонансная частота сдвигается в сторону меньших частот, а резонансная амплитуда — понижается (Арез1

Источник: studme.org

Кинетическая энергия груза на пружине формула

07.06.2019

5 июня Что порешать по физике

30 мая Решения вчерашних ЕГЭ по математике

Груз изоб­ражённого на ри­сун­ке пру­жин­но­го ма­ят­ни­ка со­вер­ша­ет гар­мо­ни­че­ские ко­ле­ба­ния между точ­ка­ми 1 и 3. Как ме­ня­ет­ся по­тен­ци­аль­ная энер­гия пру­жи­ны ма­ят­ни­ка, ки­не­ти­че­ская энер­гия груза и жёсткость пру­жи­ны при дви­же­нии груза ма­ят­ни­ка от точки 2 к точке 1?

Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер её из­ме­не­ния:

3) не из­ме­ня­ет­ся

За­пи­ши­те в таб­ли­цу вы­бран­ные цифры для каж­дой фи­зи­че­ской ве­ли­чи­ны. Цифры в от­ве­те могут по­вто­рять­ся.

По­тен­ци­аль­ная энер­гия

пру­жи­ны ма­ят­ни­ка

Ки­не­ти­че­ская энер­гия

груза

Жест­кость пру­жи­ны

Точка 2 представляет собой положение устойчивого равновесия маятника. Когда груз находится в точке 2, пружина не деформирована. Точка 1, напротив, соответствует сжатой пружине. При движении груза от точки 2, в которой он имеет максимальную скорость, к точке 1 пружина сжимается, замедляя груз. При этом потенциальная энергия пружины увеличивается, а кинетическая энергия груза уменьшается

Жесткость пружины является характеристикой пружины, не зависящей от фазы колебания, поэтому жесткость пружины не изменяется.

Источник: phys-ege.sdamgia.ru

Механические колебания. Пружинный маятник

Механическими колебаниями называются движения, характеризующиеся определенной повторяемостью во времени.

Колебания называются свободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему.

Гармоническими называются колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (или косинуса).

Пружинный маятник – это колебательная система, состоящая из груза массой т, закрепленного на пружине, совершающая гармонические колебания под действием упругой силы , зависящей от величины линейной деформации x по закону Гука (Fx = – kx, где k – жесткость пружины.

Согласно второму закону Ньютона уравнение движения маятника:

.

Так как ускорение a является второй производной от смещения x (), то

или .

Если обозначить , то получим дифференциальное уравнение свободных незатухающих гармонических колебаний пружинного маятника:

.

Решением этого дифференциального уравнения является функция x(t):

,

где отклонение тела от положения равновесия в момент времени t;

А – амплитуда колебания, то есть максимальное отклонение колеблющегося тела от положения равновесия;

wкруговая (циклическая) частота;

j начальная фаза колебания.

Круговая частота , где Т – период колебаний: .

Кинетическая энергия колебаний пружинного маятника:

.

Потенциальная энергия колебаний пружинного маятника:

.

Полная энергия колебаний пружинного маятника:

,

откуда видно, что полная энергия свободных незатухающих гармонических колебаний пружинного маятника остается со временем постоянной.

Свободные затухающие гармонические колебания пружинного маятника (рис. 6). Для пружинного маятника массой т, совершающего колебания под действием упругой силы (Fx = – kx)с учетомсилы сопротивления , пропорциональной скорости движения груза (), второй закон Ньютона имеет вид:

,

где rкоэффициент сопротивления.

Обозначив и ( коэффициент затухания), получим дифференциальное уравнение свободных затухающих гармонических колебаний пружинного маятника:

.

Решением этого дифференциального уравнения в случае малых затуханий

является функция x(t):

,

где амплитуда затухающих колебаний в момент времени t;

начальная амплитуда, т.е. амплитуда в момент времени t = 0,

круговая (циклическая) частота:

Период затухающих гармонических колебаний пружинного маятника:

.

Декремент затухания. Если A(tА(t+Т) амплитуды двух последовательных колебаний (рис. 6), то отношение этих величин называется декрементом затухания .

Логарифм называется логарифмическим декрементом затухания :

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9749 — | 7648 — или читать все.

188.64.173.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник: studopedia.ru

Ссылка на основную публикацию
Adblock
detector