Формула расчета угла конуса

Формула расчета угла конуса

Элементы конуса Расчетные формулы Элементы конуса Расчетные формулы
K K = (D-d)/ l K = 2tga D D = K× l + d D = 2× l×tga + d
a tga = (D-d)/ 2l tga = K / 2 d d = D — 2× l×tga d = D — K× l

Угол a вычисляют по тригонометрической функции тангенса.

Нормальные конические поверхности должны быть изготовлены по стандартным размерам, некоторые из которых указаны в табл.4.

Кроме этих поверхностей, различают также конусы Морзе и метрические конусы. Наружные конусы Морзе выполняют на хвостовой части сверл (см. рис.6), зенкеров, разверток, центров, а внутренние конусы — в отверстиях шпинделей, оправок, переходных втулок, в которые эти инструменты устанавливают. Существуют семь номеров конусов Морзе (от до 6) со своими размерами и углами наклона a. Наименьшим является конус Морзе (1:19,212), наибольшим — конус Морзе 6 (1:19,18). Их размеры приведены в стандарте СТ СЭВ 147-75. Недостатком конусов Морзе следует считать разные углы наклона a у различных номеров.

Таблица 4

Стандартные размеры конусов деталей

Конусность K Угол конуса 2a Угол наклона a Обозначение конусности
1:100 1:50 1:20 1:10 1:3 1:1,866 1:1,207 1:0,866 0 0 34¢23² 1 0 8¢45² 2 0 51¢51² 5 0 43¢29² 18 0 55¢30² 30 0 45 0 60 0 0 0 17¢12² 0 0 34¢23² 1 0 25¢56² 2 0 51¢45² 9 0 27¢45² 15 0 22 0 30¢ 30 0 1:100 1:50 1:20 1:10 1:3 30 0 45 0 60 0

Метрические конусы 4, 6, 80, 100, 120, 160, 200 (см. тот же стандарт) имеют одинаковую конусность 1:20 (и угол a), а номер конуса обозначает размер диаметра большого основания.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8406 — | 7319 — или читать все.

188.64.173.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник: studopedia.ru

Угол раствора и радиус конуса

Угол раствора и радиус конуса способствуют вычислению всех возможных параметров конуса за счет двух треугольников, которые они образуют. Первый треугольник – равнобедренный, с двумя образующими и диаметром конуса, из которого можно рассчитать угол наклона конуса, между образующей и основанием. Второй треугольник – прямоугольный с высотой и радиусом в качестве катетов и образующей конуса, как гипотенузой. (рис. 40.2, 40.1) β=(180°-α)/2 h=r tan⁡β l=r/cos⁡β

Зная радиус конуса, можно сразу найти его диаметр, а также периметр основания и площадь, не прибегая к дополнительным заменам. d=2r P=2πr S_(осн.)=πr^2

Чтобы найти площадь боковой поверхности, кроме радиуса понадобится образующая конуса, которая равна отношению радиуса к косинусу угла наклона, а чтобы найти площадь полной поверхности, к полученному выражению нужно прибавить площадь основания конуса. S_(б.п.)=πrl=(πr^2)/cos⁡β S_(п.п.)=S_(б.п.)+S_(осн.)=πr(r+l)=πr^2 (1+1/cos⁡β )

Объем конуса равен одной трети произведения площади основания на высоту, а так как высота представляет собой произведение радиуса на тангенс угла наклона, то объем получится уменьшенным в три раза произведением числа π на куб радиуса и тангенс угла. V=(hS_(осн.))/3=(πr^3 tan⁡β)/3

Читать еще:  Чем лучше резать керамическую плитку

Радиус сферы вписанной в конус зависит только от радиус и угла наклона, а радиус сферы описанной вокруг конуса можно найти через угол раствора конуса и радиус основания. (рис.40.3, 40.4) r_1=r tan⁡〖β/2〗 R=r/sin⁡α

Источник: geleot.ru

Уклон и Конусность

Иногда, в задачах по начертательной геометрии или работах по инженерной графике, или при выполнении других чертежей, требуется построить уклон и конус. В этой статье Вы узнаете о том, что такое уклон и конусность, как их построить, как правильно обозначить на чертеже.

Что такое уклон? Как определить уклон? Как построить уклон? Обозначение уклона на чертежах по ГОСТ.

Уклон. Уклон это отклонение прямой линии от вертикального или горизонтального положения.
Определение уклона. Уклон определяется как отношение противолежащего катета угла прямоугольного треугольника к прилежащему катету, то есть он выражается тангенсом угла а. Уклон можно посчитать по формуле i=AC/AB=tga.

Построение уклона. На примере (рисунок ) наглядно продемонстрировано построение уклона. Для построения уклона 1:1, например, нужно на сторонах прямого угла отложить произвольные, но равные отрезки. Такой уклон, будет соответствовать углу в 45 градусов. Для того чтобы построить уклон 1:2, нужно по горизонтали отложить отрезок равный по значению двум отрезкам отложенным по вертикали. Как видно из чертежа, уклон есть отношение катета противолежащего к катету прилежащему, т. е. он выражается тангенсом угла а.

Обозначение уклона на чертежах. Обозначение уклонов на чертеже выполняется в соответствии с ГОСТ 2.307—68. На чертеже указывают величину уклона с помощью линии-выноски. На полке линии-выноски наносят знак и величину уклона. Знак уклона должен соответствовать уклону определяемой линии, то есть одна из прямых знака уклона должна быть горизонтальна, а другая должна быть наклонена в ту же сторону, что и определяемая линия уклона. Угол уклона линии знака примерно 30°.

Что такое конусность? Формула для расчёта конусности. Обозначение конусности на чертежах.

Конусность. Конусностью называется отношение диаметра основания конуса к высоте. Конусность рассчитывается по формуле К=D/h, где D – диаметр основания конуса, h – высота. Если конус усеченный, то конусность рассчитывается как отношение разности диаметров усеченного конуса к его высоте. В случае усечённого конуса, формула конусности будет иметь вид: К = (D-d)/h.

Обозначение конусности на чертежах. Форму и величину конуса определяют нанесением трех из перечисленных размеров: 1) диаметр большого основания D; 2) диаметр малого основания d; 3) диаметр в заданном поперечном сечении Ds , имеющем заданное осевое положение Ls; 4) длина конуса L; 5) угол конуса а; 6) конусность с . Также на чертеже допускается указывать и дополнительные размеры, как справочные.

Размеры стандартизованных конусов не нужно указывать на чертеже. Достаточно на чертеже привести условное обозначение конусности по соответствующему стандарту.

Конусность, как и уклон, может быть указана в градусах, дробью (простой, в виде отношения двух чисел или десятичной), в процентах.
Например, конусность 1:5 может быть также обозначена как отношение 1:5, 11°25’16», десятичной дробью 0,2 и в процентах 20.
Для конусов, которые применяются в машиностроении, OCT/BKC 7652 устанавливает ряд нормальных конусностей. Нормальные конусности — 1:3; 1:5; 1:8; 1:10; 1:15; 1:20; 1:30; 1:50; 1:100; 1:200. Также в могут быть использованы — 30, 45, 60, 75, 90 и 120°.

Читать еще:  Компрессор для пескоструйных аппаратов

Источник: chertimvam.ru

Построение уклона и конусности

Построение уклона и конусности

Уклоном называют величину, характеризующую наклон одной прямой линии к другой прямой. Уклон выражают дробью или в процентах. Уклон / отрезка В С относительно отрезка ВЛ определяют отношением катетов прямоугольного треугольника ЛВС (рисунок 50, а), т. е.

  • Для построения прямой ВС (рисунок 50. а) с заданной величиной уклона к горизонтальной прямой, например 1:4, необходимо от точки А влево отложить отрезок АВ, равный четырем единицам длины, а вверх отрезок АС, равный одной единице длины. Точки С и В соединяют прямой, которая даст направление искомого уклона.
  • Уклоны применяются при вычерчивании деталей, например, стальных балок и рельсов, изготовляемых на прокатных станах, и некоторых деталей, изготовленных литьем.

При вычерчивании контура детали с уклоном сначала строится линия уклона, а затем контур. Если уклон задается в процентах, например, 20 % (рисунок 50, б)> то линия уклона строится так же, как гипотенуза прямоугольного треугольника. Длину одного из катетов принимают равной 100 %, а другого — 20 %.

Очевидно, что уклон 20 % есть иначе уклон 1:5. Г1о ГОСТ 2.307—68 перед размерным числом, определяющим уклон, наносят условный знак, острый угол которого должен быть направлен в сторону уклона (рисунок 50, а и б). Подробнее обозначение уклона приведено в разделе 1.7 «Нанесение размеров и предельных отклонений».

Примеры решения в задачах

Методические указания и учебники решения и формулы
задачи и методички теория

Конусностью называется отношение диаметра основания конуса к его высоте (рисунок 51, а). Обозначается конусность буквой С. Если конус усеченный (рисунок 51, б) решение задач по высшей математике с диаметрами оснований D и d и длиной L, то конусность определяется по формуле: Например (рисунок 51, б), если известны размеры D= 30 мм, d- 20 мм и L = 70 мм, то Если известны конусность С, диаметр одного из оснований конуса d и длина конуса можно определить второй диаметр конуса.

  • Например, С- 1:7, d- 20 мм и 1 = 70 мм; D находят по формуле (рисунок 51, б). По ГОСТ 2.307—68 перед размерным числом, характеризующим конусность, необходимо наносить условный знак конусности, который имеет вид равнобедренного треугольника с вершиной, направленной в сторону вершины конуса (рисунок 51, б).

Подробнее обозначение конусности приведено в разделе 1.7 «Нанесение размеров и предельных отклонений». Вопросы для самопроверни 1. Что называется уклоном? 2. Что называется конусностью? 3. Как обозначается на чертеже конусность и уклон? 4. Как определяется конусность и уклон?

Читать еще:  Чем лучше паять медь

Информация расположенная на данном сайте несет информационный характер и используется для учебных целей.
© Брильёнова Наталья Валерьевна

Источник: natalibrilenova.ru

Конусность

Конусность — отношение разности диаметров двух поперечных сечений кругового конуса к расстоянию между ними.

Конусность имеет двойной Уклон: k=2i Конусность на чертеже может быть указана в градусной мере, в радианах и в процентах. Заданы конусность пробки крана 1:5, диаметр D=BC=20 мм, длина l=35 мм.

Необходимо построить очертание пробки крана одним из двух способов: Первый способ. Из формулы k=2i находим i=1:10. Отмечаем точки BC и строим треугольник DKP так, чтобы KP_BK=1:10. Продолжив BP до пересечения с осью конуса, получим вершину конуса S. Точку S соединяем с точкой C. Отложив по оси пробки от BC отрезок l=35 мм и проведя через конец этого отрезка прямую, перпендикулярную к оси , получим диаметр d=EF=13 мм торца пробки; Второй способ. Из формулы k=(D-d)/l находим d=EF=20-35/5=13 мм; Величина угла при вершине конуса:

здесь угол φ представлен в радианах.

где L — расстояние от большого сечения до вершины S конуса, а отношение: D/(2L) = tgφ Пусть задана конусность например 1 : 2,5 откуда i=1:5 и tgφ=0,2 тогда перевод ее в градусы выполняется по формулам:

Конусность стандартизована. ГОСТ 8593-81 устанавливает нормальные конусности и углы конусов

Обозна- чение конуса Конус- ность Угол конуса Угол уклона
Ряд 1 Ряд 2 Угл. ед. Рад. Угл. ед. Рад.
1:500 1:500 0,0020000 6`52,5″ 0,0020000 3`26,25″ 0,0010000
1:200 1:200 0,0050000 17`11,3″ 0,0050000 8`25,65″ 0,0025000
1:100 1:100 0,0100000 34`22,6″ 0,0100000 17`11,3″ 0,0050000
1:50 1:50 0,0200000 1°8`45,2″ 0,0199996 34`22,6″ 0,0099998
1:30 1:30 0,0333333 1°54`34,9″ 0,0333304 57`17,45″ 0,0166652
1:20 1:20 0,0500000 2°51`51,1″ 0,0499896 1°25`55,55″ 0,0249948
1:15 1:15 0,0666667 3°49`5,9″ 0,0666420 1°54`32,95″ 0,0333210
1:12 1:12 0,0833333 4°46`18,8″ 0,0832852 2°23`9,4″ 0,0416426
1:10 1:10 0,1000000 5°43`29,3″ 0,0999168 2°51`44,65″ 0,0499584
1:8 1:8 0,1250000 7°9`9,6″ 0,1248376 3°34`34,8″ 0,0624188
1:7 1:7 0,1428571 8°10`16,4″ 0,1426148 4°5`8,2″ 0,0713074
1:6 1:6 0,1666667 9°31`38,2″ 0,1662824 4°45`49,1″ 0,0831412
1:5 1:5 0,2000000 11°25`16,3″ 0,1993374 5°42`38,15″ 0,0996687
1:4 1:4 0,2500000 14°15`0,1″ 0,2487100 7°7`30,05″ 0,1243550
1:3 1:3 0,3333333 18°55`28,7″ 0,3302972 9°27`44,35″ 0,1651486
30° 1:1,866025 0,5358985 30° 0,5235988 15° 0,2617994
45° 1:1,207107 0,8284269 45° 0,7853982 22°30` 0,3926991
60° 1:0,866025 1,1547010 60° 1,0471976 30° 0,5235988
75° 1:0,651613 1,5346532 75° 1,3089970 37°30` 0,6544985
90° 1:0,500000 2,0000000 90° 1,5707964 45° 0,7853982
120° 1:0,288675 3,4641032 120° 2,0943952 60° 1,0471976

Конусности и углы конусов должны соответствовать указанным на чертеже и в таблице. При выборе конусностей или углов конусов ряд 1 следует предпочитать ряду 2.

Конусность поверхности

обозначается на чертеже: — надписью Конусность с указанием ее величины; — указывающей на нее стрелкой с полкой где пишется: — Конусность с указанием ее величины; — знак конусности и ее величина.

Источник: ngeo.fxyz.ru

Ссылка на основную публикацию
Adblock
detector