Формула расчета средней мощности

Формула расчета средней мощности

Скорость совершения работы характеризуется мощностью.

Различают среднюю и мгновенную мощность.

Средняя мощность определяется формулой

где A — работа, совершаемая за время ∆ t .

Для вычисления средней мощности также пользуются формулой

N = ( F → , 〈 v → 〉 ) = F → ⋅ 〈 v → 〉 = F 〈 v 〉 cos α ,

где F → — сила, совершающая работу; 〈 v → 〉 — средняя скорость перемещения; α — угол между векторами F → и 〈 v → 〉 .

В Международной системе единиц мощность измеряется в ваттах (1 Вт).

Мгновенная мощность определяется формулой

где A ′( t ) — производная от функции работы по времени.

Для вычисления мгновенной мощности также пользуются фор­мулой

N = ( F → , v → ) = F → ⋅ v → = F v cos α ,

где F → — сила, совершающая работу; v → — мгновенная скорость перемещения; α — угол между векторами F → и v → .

Пример 20. Тело массой 60 г к моменту падения на Землю имеет скорость 5,0 м/с. Определить мощность силы тяжести в этот момент.

Решение. На рисунке показаны направления скорости тела и силы тяжести, действующей на тело.

В задаче задана мгновенная скорость тела; следовательно, мощность, которую необходимо рассчитать, также является мгновенной мощностью. Величина мгновенной мощности силы тяжести определяется формулой

где mg — модуль силы тяжести; m — масса тела; g — модуль ускорения свободного падения; v — модуль скорости тела; α = 0° — угол между векторами скорости и силы.

N = 60 ⋅ 10 − 3 ⋅ 10 ⋅ 5,0 ⋅ 1 = 3,0 Вт.

Пример 21. При скорости 36 км/ч мощность двигателя автомобиля равна 2,0 кВт. Считая, что сила сопротивления движению автомобиля со стороны воздуха и дороги пропорциональна квадрату скорости, определить мощность двигателя при скорости 72 км/ч.

Решение. Мощность двигателя автомобиля определяется силой тяги и скоростью:

N * = F тяги v cos α ,

где F тяги — величина силы тяги двигателя автомобиля; v — модуль скорости автомобиля при заданной мощности; α = 0° — угол между векторами силы тяги и скорости.

Силы, действующие на автомобиль, направление его скорости и выбранная система координат показаны на рисунке.

Для определения величины силы тяги запишем второй закон Ньютона с учетом того, что автомобиль движется с постоянной скоростью:

F → тяги + F → сопр + m g → + N → = 0 ,

или в проекциях на координатные оси —

O x : F тяги − F сопр = 0 ; O y : N − m g = 0, >

где F сопр — модуль силы сопротивления движению автомобиля; N — модуль силы нормальной реакции, действующей на автомобиль со стороны дороги; m — масса автомобиля; g — модуль ускорения свободного падения.

Из первого уравнения системы следует равенство модулей сил тяги и сопротивления:

По условию задачи сила сопротивления пропорциональна квадрату скорости автомобиля:

где k — коэффициент пропорциональности.

Подстановка данного выражения в формулу для силы тяги

а затем в формулу для вычисления мощности дает:

N * = k v 3 cos α .

Таким образом, мощность двигателя автомобиля определяется формулой:

N 1 * = k v 1 3 cos α ;

N 2 * = k v 2 3 cos α ,

где v 1 = 36 км/ч — первая скорость автомобиля; v 2 = 72 км/ч — вторая скорость автомобиля.

N 1 * N 2 * = k v 1 3 cos α k v 2 3 cos α = ( v 1 v 2 ) 3

позволяет вычислить искомую мощность автомобиля:

N 2 * = N 1 * ( v 2 v 1 ) 3 = 2,0 ⋅ 10 3 ⋅ ( 72 36 ) 3 = 16 ⋅ 10 3 Вт = 16 кВт.

Пример 22. Два автомобиля одновременно трогаются с места и движутся равноускоренно. Массы автомобилей одинаковы. Во сколько раз средняя мощность первого автомобиля больше средней мощности второго, если за одно и то же время первый автомобиль развивает скорость вдвое большую, чем второй? Сопротивлением движению пренебречь.

Решение. Мощность двигателей автомобилей определяется фор­мулой:

N 1 * = F тяги 1 v 1 cos α ,

N 2 * = F тяги 2 v 2 cos α ,

где F тяги1 — величина силы тяги двигателя первого автомобиля; v 1 — модуль скорости первого автомобиля; F тяги2 — величина силы тяги двигателя второго автомобиля; v 2 — модуль скорости второго автомобиля; α = 0° — угол между векторами силы тяги и скорости.

Силы, действующие на первый и второй автомобиль, направление движения и выбранная система координат показаны на рисунке.

Для определения величины силы тяги запишем второй закон Ньютона с учетом того, что автомобили движутся равноускоренно:

F → тяги 1 + m 1 g → + N → 1 = m 1 a → 1 ,

или в проекциях на координатные оси —

O x : F тяги 1 = m 1 a 1 ; O y : N 1 − m 1 g = 0, >

F → тяги 2 + m 2 g → + N → 2 = m 2 a → 2 ,

или в проекциях на координатные оси —

O x : F тяги 2 = m 2 a 2 ; O y : N 2 − m 2 g = 0, >

где m 1 — масса первого автомобиля; m 2 — масса второго автомобиля; g — модуль ускорения свободного падения; N 1 — модуль силы нормальной реакции, действующей на первый автомобиль со стороны дороги; N 2 — модуль силы нормальной реакции, действующей на второй автомобиль со стороны дороги; a 1 — модуль ускорения первого автомобиля; a 2 — модуль ускорения второго автомобиля.

Из записанных уравнений следует, что величины сил тяги первого и второго автомобиля определяются формулами:

F тяги1 = m 1 a 1 ,

F тяги2 = m 2 a 2 .

Отношение модулей сил тяги ( F тяги1 / F тяги2 ) определяется отношением

F тяги 1 F тяги 2 = m 1 a 1 m 2 a 2 .

Движение автомобилей происходит равноускоренно без начальной скорости, поэтому их скорость с течением времени изменяется по законам:

Отношение модулей скоростей ( v 1 / v 2 ) определяется отношением величин ускорений ( a 1 / a 2 ):

v 1 v 2 = a 1 a 2 ,

а отношение мощностей —

N 1 * N 2 * = F тяги 1 v 1 cos α F тяги 2 v 2 cos α = F тяги 1 F тяги 2 v 1 v 2 .

Подставим в полученное отношение выражения для ( F тяги1 / F тяги2 ) и ( v 1 / v 2 ):

N 1 * N 2 * = m 1 a 1 m 2 a 2 a 1 a 2 = m 1 m 2 ( a 1 a 2 ) 2 .

Преобразование формулы с учетом равенства масс автомобилей ( m 1 = m 2 = m ) и замены ( a 1 / a 2 = v 1 / v 2 ) дает искомое отношение мощностей:

N 1 * N 2 * = ( v 1 v 2 ) 2 = ( 2 v 2 v 2 ) 2 = 2 2 = 4 .

Таким образом, мощность первого автомобиля в 4 раза больше мощности второго автомобиля.

Источник: vedy.by

Для того, чтобы обеспечить безопасность при эксплуатации промышленных и бытовых электрических приборов, необходимо правильно вычислить сечение питающей проводки и кабеля. Ошибочный выбор сечения жил кабеля может привести из-за короткого замыкания к возгоранию проводки и к возникновению пожара в здании.

Что такое мощность (Р) электротока

Электрическая мощность является физической величиной, характеризующей скорость преобразования или передачи электрической энергии. Единицей измерения по Международной системе единиц (СИ) является ватт, в нашей стране обозначается Вт, международное обозначение — W.

Что влияет на мощность тока

На мощность (Р) влияет величина силы тока и величина приложенного напряжения. Расчет параметров электроэнергии выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы электротока используется значения напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы электротока выбирается сечение жил кабелей и проводов.

Читать еще:  Электрическая схема автомобильного компрессора

Отличия мощности при постоянном и переменном напряжении

Ведем обозначения электрических величин, которые приняты в нашей стране:

  • Р − активная мощность, измеряется в ваттах, обозначается Вт;
  • Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
  • S − полная мощность, измеряется в вольт амперах, обозначается ВА;
  • U − напряжение, измеряется в вольтах, обозначается ВА;
  • I − ток, измеряется в амперах, обозначается А;
  • R − сопротивление, измеряется в омах, обозначается Ом.

Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.

Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.

По какой формуле вычисляется

Расчет силы тока по мощности и напряжению в сети постоянного тока

Для расчета силы I (тока), надо величину U (напряжения) разделить на величину сопротивления.

Расчет силы тока по мощности и напряжению:

Измеряется в амперах.

Для такого случая электрическую Р (активную мощность) можно посчитать как произведение силы электрического I на величину U.

Формула расчета мощности по току и напряжению:

Все компоненты в этих двух формулах характерны для постоянного электротока и их называют активными.

Исходя из этих двух формул, можно вывести также еще две формулы, по которым можно узнавать P:

Однофазные нагрузки

В однофазных сетях переменного электротока требуется произвести вычисление отдельно для Р и Q нагрузки, затем надо при помощи векторного исчисления их сложить.

В скалярном виде это будет выглядеть так:

В результате расчет P, Q, S имеет вид прямоугольного треугольника. Два катета этого треугольника представляют собой P и Q составляющие, а гипотенуза — их алгебраическую сумму.

S измеряется в вольт-амперах (ВА), Q измеряется в вольт-амперах-реактивных (ВАр), Р измеряется в ваттах (Вт).

Зная величины катетов для треугольников, можно рассчитать коэффициент мощности (cos φ). Как это сделать, показано на изображении треугольника.

Расчет в трехфазной сети

Переменный I (ток) отличается от постоянного по всем параметрам, особенно наличием нескольких фаз. Расчет P в трехфазной нагрузке необходим для правильного определения характеристик подключаемой нагрузки. Трехфазные сети широко применяются в связи с удобством эксплуатации и малыми материальными затратами.

Трехфазные цепи могут соединяться двумя способами – звездой и треугольником. На всех схемах фазы обозначают символами А, В, С. Нейтральный провод обозначают символом N.

При соединении звездой различают два вида U (напряжения) – фазное и линейное. Фазное U определяется как U между фазой и нейтральным проводом. Линейное U определяется как U между двумя фазами.

Эти два U связаны между собой соотношением:

Линейные и фазные электротоки при соединении звездой равны друг другу: IЛ = IФ

Форма расчета S при соединении звездой:

S = SA + SB + SC = 3 × U × I

Р = 3 × Uф × Iф × cosφ

Q = √3 × Uф × Iф × sinφ.

При соединении треугольником фазное и линейное U равны друг другу: UЛ = UФ

Линейный I при соединении треугольником определяется по формуле:

Формулы мощности электрического тока при соединении треугольником:

  • S = 3 × Sф = √3 × Uф × Iф;
  • Р = √3 × Uф × Iф × cosφ;
  • Q = √3 × Uф × Iф × sinφ.

Средняя P в активной нагрузке

В электрических сетях P измеряют при помощи специального прибора – ваттметра. Схемы подключения находятся в зависимости от способа подключения нагрузки.

При симметричной нагрузке P измеряется в одной фазе, а полученный результат умножают на три. В случае несимметричной нагрузки для измерения потребуется три прибора.

Параметры P электросети или установки являются важными данными электрического прибора. Данные по потреблению P активного типа передаются за определенный период времени, то есть передается средняя потребляемая P за расчетный период времени.

Подбор номинала автоматического выключателя

Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.

При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.

Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.

У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.

Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.

Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.

Видео о законах электротехники

Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.

Источник: vdome.club

Формула механической мощности — средняя и мгновенная мощность

В общем смысле этим термином обозначают энергетические изменения определенной системы. Классическая формула механической мощности устанавливает связь между работой и временем, которое понадобилось на завершение соответствующего процесса. В этой публикации дополнительно рассмотрены электрические и гидравлические параметры энергии, методики вычислений, измерительные приборы.

Используемые обозначения

В стандартных формулах мощность часто обозначают буквой N без уточнения происхождения. Достаточно часто применяют P. В этом варианте понятен исходный смысл: от латинского слова potestas – действие, мощь, сила. В электротехнике часто применяют W (watt – англ., ватт). Дополнительными символами отмечают специфическое назначение NH – гидравлическая мощность от hydraulics.

Основные формулы

Когда рассчитывается средняя мощность формула содержит значения для определенных промежутков: ΔА (работа) и Δt (время). Мгновенные показатели обозначают dA и dt, соответственно. Чтобы узнать количество потребленной энергии, берут интеграл за необходимый временной интервал.

Читать еще:  Чем отличается реле от магнитного пускателя

Единицы измерения

В действующей системе единиц «СИ», утвержденной на международном уровне, мощность предлагается указывать в ваттах (один Вт = работе 1 Джоуль, сделанной за 1 секунду). Устаревшее обозначение «лошадиная сила» рекомендовано изъять из оборота. Для удобства применяют производные значения с определенными приставками (один киловатт (1кВт) = 10 в третьей степени ватт = 1 000 Вт).

Перевод 1 Вт в иные обозначения:

  • килограмм-сила-метр в секунду (кгс*м/с) – 0,102;
  • эрг в секунду (эрг/с) – 107;
  • лошадиная сила (л.с.) метрическая/ английская – 1,36*10-3/ 1,34*10-3.

К сведению. Если в описании автомобиля указано 125 кВт, это равнозначно 170 л.с. (125*1,36=169,95).

Мощность в механике

В ходе исследования механических процессов необходимо учитывать точку приложения усилия и направление действия. Рассчитать мощность можно по формуле (N=F*v) с учетом скорости движения (v) определенного тела. Если направления не совпадают, добавляют корректирующий множитель (cosα).

Электрическая мощность

В этой области не важны тяжесть предметов, сила трения, другие механические термины и определения. Тем не менее, суть рассматриваемой физической величины остается неизменной, подобны принципы отдельных вычислений.

Можно применить для расчета мгновенной мощности формулу:

где:

  • (a-b) – обозначают энергию, затраченную на перемещение заряда (q) из одной в другую точку;
  • А – выполненная в ходе этого процесса работа.

Если взять все заряды (Q), напряжение в контрольных точках (U), нетрудно вычислить суммарную мощность:

P = (U/ Δt) * Q = U * Q/ Δt = U *I.

Последнее преобразование основано на классическом определении тока (количество зарядов, протекающих по соответствующему проводнику за определенное время).

Для пассивных цепей можно пользоваться законом Ома и соответствующими формулами без дополнительных коррекций. Учитывают (при наличии) источник электродвижущей силы (направление движения токов).

При подключении техники к источникам переменного тока вычисления усложняются. Приходится интегрировать мгновенные значения с учетом определенных периодов, частоты и формы сигналов. На практике часто решают задачи по вычислению мощности потребителей, подключенных к источнику питания с синусоидальным током (напряжением).

Активная составляющая энергии в этом случае будет зависеть от фазового сдвига. Значение вычисляют по формуле:

Pa = U * I * cosϕ (для 220V).

При работе с трехфазными источниками пользуются измененным вариантом выражения:

Pa = √3 * U * I * cosϕ = 1,732 * U * I * cosϕ.

Реактивная переменная потребляется и возвращается в источник питания. Для расчета берут следующую зависимость базовых параметров:

Полная мощность:

Приборы для измерения электрической мощности

С учетом основных компонентов формулы несложно понять, что значения необходимых параметров (ток и напряжение) можно узнать с помощью обычного мультиметра. По необходимому уровню точности выбирают методику и класс измерительного прибора.

Специализированные изделия (ваттметры) способны отображать результаты исследований при работе в сетях постоянного и переменного тока. Специальные модификации (варметры) замеряют реактивную составляющую.

Гидравлическая мощность

Узнать производительность асинхронного электродвигателя насоса можно косвенным методом, по выполненной работе. Для этого умножают перепад измеренных (вход/ выход) давлений (ΔP) на количество перекачанной жидкости (V) в м куб. за секунду.

Пример:

  • напор по манометрам – 220 кгс/ см кв.;
  • производительность – 65 л/мин. = 3,9 куб. м/ час = 0,001083 куб. м /с.;
  • мощность NH = ΔP * V = 220 * 100 (перевод см в м) * 0,001083 = 23,83 кВт.

Мощность силы

Для решения практических задач меняют рассмотренные выражения необходимым образом. Расчет энергетических изменений отображает пример с падающим предметом:

  • в исходных данных известны высота и масса тела;
  • требуется установить мощность силы формула которой отображает результат на половине пути при свободном падении;
  • подставляют вместо базовых компонентов известные величины:
  1. F = m *g;
  2. V (скорость в определенной точке) = Vn (начальная скорость) + g*t.
  • после завершения преобразований получают:

Мощность вращающихся объектов

Для расчета подобной системы применяют формулу:

N = M * w = (2π * M* n)/60,

где:

  • M – момент силы;
  • w – угловая скорость, характеризующая вращение;
  • n – количество оборотов, которое совершает двигатель или другое устройство за 60 секунд.

Приведенные сведения используют с учетом целевого назначения и реальных условий. Так, в термодинамике необходимо помнить о зависимости эффективности системы от температуры окружающей среды. Тепловые потери нагревателя оценивают по соответствующей мощности на единицу площади поверхности. Аналогичным образом поступают при решении механических задач для расчета тяги, КПД, иных рабочих параметров. Как правило, приходится специальным коэффициентом компенсировать трение.

В электрических цепях ток ограничивает сопротивление проводника. Для небольших расстояний при малой мощности тщательные расчеты не нужны. Однако проект магистральной трассы обязательно содержит соответствующие вычисления. На основе полученных результатов делают выводы о среднегодовых экономических показателях. Следует помнить о необходимости учета искажений, которые добавляют при работе с переменным напряжением реактивные нагрузки.

Видео

Источник: amperof.ru

Среднегодовая мощность

Методы расчета ПМ

ПМ предприятия определяется по мощности ведущих цехов. Мощность цехов по мощности ведущего технологического оборудования.

ПМ цеха: участка, оснащенного однотипным оборудованием. Однотипное оборудование – на которых выпускается один тип продукции на одинаковых станках. Мощность определяется по формуле:

Пч – часовая производительность оборудования.

Тпл – плановый (эффективный) годовой фонд времени работы единицы оборудования.

Н – среднегодовой ?пар этого вида оборудования.

ПМ цехов массового и крупносерийного производства: определяется исходя из планового фонда времени работы оборудования и ритма или такта работы конвейера.

t – такт схода готовых изделий с конвейера в минутах

ПМ предприятия или цеха при однотипном оборудовании:

ti – норма времени на изготовление изделия

n – среднегодовое количество однотипное оборудование

ПМ ведущего цеха:

M1,М2 – ПМ данного вида однотипного оборудования

а1,а2 – количество единиц данного типа оборудования

ПМ предприятия в целом: определяется по мощности ведущего участка цеха на основе предварительного выравнивания продукции, т.е. согласование уровня использования по группам и стадиям обработки с расшивкой «узких мест». На любом предприятии любой технологический процесс ведется по закону – «технологический регламент».

Читать еще:  Что такое анкерное крепление

Степень использования ПМ характеризуется коэффициентом использования мощности.

Qф – фактический объем выпуска продукции

М’ – среднегодовая ПМ (средняя величина)

По видам различают проектную, входную, выходную и среднегодовую ПМ.

Под входной ПМ понимают производственную мощность предприятия, цеха по состоянию на 1 января текущего года.

Под выходной ПМ понимают ПМ предприятия, цеха, участка на конец планового периода.

Мн – мощность на начало периода

Мс – ввод мощности в результате строительства.

Мр – прирост мощности в следствии реконструкции предприятия

Мп – увеличение мощности в результате технического перевооружения и других мероприятий.

Миз – увеличение (уменьшение) мощности в следствие изменения номенклатуры трудоемкости продукции

Мв – уменьшение мощности вследствие выбытия оборудования

Это мощность, которой будет располагать предприятие, цех, участок в среднем за расчетный период или за год

Мвв – мощности, введенные в действие в течение года.

Nвв – число месяцев эксплуатации введенной в действие мощности

Мвыб – выбывшие в течение года мощности

Nвыб – число месяцев с момента выбытия мощности до конца года

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10472 — | 7306 — или читать все.

188.64.173.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник: studopedia.ru

Как найти мощность

Работа электрической цепи определяется многими параметрами, в том числе и мощностью, играющей важную роль наряду с силой тока и напряжением. Данный показатель служит одной из характеристик электрических устройств и оборудования. Поэтому довольно часто возникает вопрос, как найти электрическую мощность того или иного прибора. Это необходимо для того, чтобы знать его энергопотребление и возможности совершения полезной работы.

Понятие мощности электрического тока

Понятие мощности тесно связано с количеством работы, которую может выполнить электрический ток в течение установленного периода времени. Работа тока заключается в преобразовании электричества в другие виды энергии – механическую, кинетическую, тепловую и другие. Следовательно, мощность, по своей сути, представляет собой скорость всех этих превращений.

Показатели – мощность и напряжение встречаются постоянно в повседневной жизни в тех областях, где используются электрические устройства. Все они потребляют определенное количество электротока, поэтому перед началом эксплуатации должны учитываться их потенциальные возможности, параметры и технические характеристики.

Значение мощности используемых приборов требуется для того, чтобы рассчитать сечения кабелей и проводов, номиналов автоматических выключателей и другой защитной аппаратуры. Кроме того, становится возможным заранее подсчитать, за какой срок может быть выполнена та или иная работа.

Для выполнения расчетов используется формула, представляющая собой P = A/t, где А является работой, а t – установленным отрезком времени. Существует два вида мощности – активная и реактивная.

Активная и реактивная мощность

Понятие активной мощности заключается в непосредственном преобразовании электрического тока в механическую, тепловую и другие виды энергии. Этот процесс носит необратимый характер и не может быть выполнен в обратном направлении. Для измерения активной мощности существует специальная единица – ватт (Вт). Формула определяет 1 Вт = 1 вольт х 1 ампер. В быту и на производстве применяются более высокие величины – киловатты и мегаватты.

В отличие от активной, реактивная мощность создается за счет нагрузки, возникающей в емкостных или индуктивных устройствах. Когда используется переменный ток для определения этого показателя существует формула Q = U x I x sin φ. В этом случае sin φ представляет собой сдвиг фаз, который образует сниженное напряжение и рабочий ток. Сам угол имеет значение в диапазоне 0-90 градусов или от 0 до минус 90 градусов. Для измерения реактивной мощности применяются вольт-амперы.

Индуктивные и емкостные элементы способствуют возвращению электроэнергии обратно в сеть. В результате смещений по параметрам напряжения и тока, в электрической сети могут возникнуть некоторые перегрузки и другие негативные явления. Особенно ярко это проявляется у конденсаторов, отдающих обратно весь накопленный заряд. В такие моменты происходит обратное перемещение напряжения и тока, сдвинутых относительно друг друга.

Энергия емкости и индуктивности, смещенных по фазе относительно собственных характеристик сети как раз и представляет собой реактивную мощность. Она компенсируется за счет обратного эффекта, предотвращая потери в эффективности подачи электроэнергии.

Как вычислить электрическую мощность

Составляя проект любой электрической цепи, сначала надо найти мощность и уже по ее результатам определять значение допустимой нагрузки. Для постоянного тока используется всем известная формула P = U x I, выведенная по закону Ома.

Гораздо сложнее узнать мощность если используется переменный ток. Это связано с потреблением реактивной энергии все используемой аппаратурой. Следовательно, формула, приведенная выше, соответствует полному количеству энергии, потребляемой данным устройством. Ее активная составляющая определяется с помощью cosφ, зная которую можно установить, какова часть активной энергии заключена во всей полной мощности.

Это будет выглядеть следующим образом: Ракт = Робщ х cosφ = U x I x cosφ. Следовательно, полная мощность электроприбора определяется Робщ = Ракт/cosφ. Ее показатели будут всегда выше, нежели у активной мощности.

Примерно такая же схема расчетов используется и для трехфазных сетей, каждая из которых условно состоит из трех однофазных. Разница между ними заключается в фазном и линейном напряжении. Первое применяется в однофазном варианте и замеряется между фазой и нулем. Линейное напряжение при трех фазах измеряется между каждым линейным проводом.

Таким образом, зная, что Uлин = Uфаз х √3, найдём активную нагрузку, как P = U x I x √3. Мощность агрегата, например, электродвигателя, инженеры нашли в виде формулы P = U x I x √3 x cosφ. Как правило, мощность того или иного устройства известна заранее, а в большинстве случаев требуется вычислить ток. В этом случае сила тока определяется: I = P/(U x √3 x cosφ).

Источник: electric-220.ru

Ссылка на основную публикацию
Adblock
detector