Электрофизические методы обработки металлов

Электрофизические методы обработки металлов

Расширенное использование труднообрабатываемых материалов для изготовления деталей машин, усложнение конструкций этих деталей в сочетании с возрастающими требованиями к снижению себестоимости и увеличению производительности послужило причиной разработки и освоения методов электрофизической обработки .

Электрофизические методы обработки металлов основаны на использовании специфических явлений, возникающих под действием электрического тока, для удаления материала или изменения формы заготовки.

Основным преимуществом электрофизических методов обработки металлов является возможность их использования для изменения формы заготовок из материалов, не поддающихся обработке резанием, причём обработка этими методами происходит в условиях действия минимальных сил или при полном их отсутствии.

Важным преимуществом электрофизических методов обработки металлов является независимость производительности большинства из них от твёрдости и хрупкости обрабатываемого материала. Трудоёмкость и длительность этих методов обработки материалов повышенной твёрдости (НВ>400) меньше, чем трудоёмкость и длительность обработки резанием.

Электрофизические методы обработки металлов охватывает практически все операции механической обработки и не уступает большинству из них по достигаемой шероховатости и точности обработки.

Электроэрозионная обработка металлов

Электроэрозионная обработка является разновидностью электрофизической обработки и характеризуется тем, что изменение формы, размеров и качества поверхности заготовки происходит под действием электрических разрядов.

Электрические разряды возникают при пропускании импульсного электрического тока в зазоре шириной 0,01 – 0,05 мм между электродом-заготовкой и электродом-инструментом. Под действием электрических разрядов материал заготовки плавится, испаряется и удаляется из межэлектродного зазора в жидком или парообразном состоянии. Подобные процессы разрушения электродов (заготовок) называют электрической эрозией .

В целях интенсификации электрической эрозии зазор между заготовкой и электродом заполняют диэлектрической жидкостью (керосин, минеральное масло, дистиллированная вода). При достижении на электродах напряжения, равного напряжению пробоя, в среде между электродом и заготовкой образуется канал проводимости в виде заполненной плазмой цилиндрической области малого сечения с плотностью тока 8000 – 10000 А/мм2. Высокая плотность тока, поддерживаемая в течении 10-5 – 10-8с, обеспечивает температуру на поверхности заготовки до 10000 — 12000˚С.

Удаленный с поверхности заготовки металл охлаждается диэлектрической жидкостью и застывает в виде сферических гранул диаметром 0,01 – 0,005 мм. В каждый последующий момент времени импульс тока пробивает межэлектродный зазор в том месте, где промежуток между электродами оказался наименьшим. Непрерывное подведение импульсов тока и автоматическое сближение электрода-инструмента с электродом-заготовкой обеспечивают продолжение эрозии до тех пор, пока не будет, достигнут заданный размер заготовки или не будет удален весь металл заготовки в межэлектродном зазоре.

Режимы электроэрозионной обработки делятся на электроискровые и электроимпульсные.

Электроискровые режимы характеризуются использованием искровых разрядов с малой длительностью (10-5…10-7с) при прямой полярности подключения электродов (заготовка “+”, инструмент “-”).

В зависимости от мощности искровых разрядов режимы делятся на жесткие и средние (для предварительной обработки), мягкие и особо мягкие (для окончательной обработки). Использование мягких режимов обеспечивает отклонение размеров детали до 0,002 мм при параметре шероховатости обработанной поверхности Rа=0.01 мкм. Электроискровые режимы используют при обработке твердых сплавов, труднообрабатываемых металлов и сплавов, тантала, молибдена, вольфрама и т.д. Обрабатывают сквозные и глубокие отверстия любого поперечного сечения, отверстия с криволинейными осями; используя проволочные и ленточные электроды, вырезают детали из листовых заготовок; нарезают зубья и резьбы; шлифуют и клеймят детали.

Для проведения обработки на электроискровых режимах используют станки (см. рис.), оснащенные RC-генераторами, состоящего из заряженного и разряженного контура. Зарядный контур включает конденсатор С, заряжающийся через сопротивление R от источника тока с напряжением 100 – 200 В, а в разрядный контур параллельно конденсатору С включены электроды 1 (инструмент) и 2 (заготовка).

Как только напряжение на электродах достигает пробойного, через межэлектродный зазор происходит искровой разряд энергии, накопленной в конденсаторе С. Производительность эрозионного процесса может быть увеличена уменьшением сопротивления R. Постоянство межэлектродного зазора поддерживается специальной следящей системой, управляющей механизмом автоматического движения подачи инструмента, изготовленного из меди, латуни или углеграфитных материалов.

Наиболее целесообразной областью применения электроимпульсных режимов является предварительная обработка заготовок сложнопрофильных деталей (штампы, турбины, лопатки и т.д.), изготовленных из труднообрабатываемых сплавов и сталей.

Электроимпульсные режимы реализуются установками (см рис), в которых на электроды 1 и 2 подаются униполярные импульсы от электромашинного 3 или электронного генератора. Возникновение Э.Д.С. индукции в намагниченном теле движущимся под некоторым углом к направлению оси намагничивания позволяет получать ток большей величины.

Лучевая обработка металлов

Разновидностями лучевой обработки в машиностроении является электронно-лучевая или светолучевая обработка.

Электронно-лучевая обработка металлов основана на тепловом воздействии потока движущихся электронов на обрабатываемый материал, который в месте обработки плавится и испаряется. Столь интенсивный нагрев вызывается тем, что кинетическая энергия движущихся электронов при ударении о поверхность обрабатываемой заготовки почти полностью переходит в тепловую, которая будучи сконцентрирована на площадке малых размером (не более 10 мкм), вызывает её разогревание до 6000˚С.

При размерной обработке, как известно, происходит локальное воздействие на обрабатываемый материал, что при электроннонно-лучевой обработке обеспечивается импульсным режимом потока электронов с продолжительностью импульсов 10-4…10-6 с и частотой f = 50 … 5000 Гц.

Высокая концентрация энергии при электронно-лучевой обработке в сочетании с импульсным воздействием обеспечивают условия обработки, при которых поверхности заготовки, находящиеся на расстоянии 1 мкм от кромки электронного луча, разогреваются до 300˚С. Это позволяет использовать электронно-лучевую обработку для резки заготовок, изготовления сеток из фольги, вырезания пазов и обработки отверстий диаметром 1 – 10 мкм в деталях из труднообрабатываемых материалов.

В качестве оборудования для проведения электронно-лучевой обработки используют специальные электровакуумные устройства, называемые электронными пушками (см рис). Они генерируют, ускоряют и фокусируют электронный луч. Электронная пушка состоит из вакуумной камеры 4 (с разрежением 133·10-4), в которой установлен питаемый источником высокого напряжения 1 вольфрамовый катод 2, обеспечивающий эмиссию свободных электронов, которые разгоняются электрическим полем, созданным между катодом 2 и анодной диафрагмой 3.

Далее электронный луч проходит через систему магнитных линз 9, 6, устройство электрической юстировки 5 и фокусируется на поверхности обрабатываемой заготовки 7, установленной на координатном столе 8. Импульсный режим работы электронной пушки обеспечивается системой состоящей из импульсного генератора 10 и трансформатора 11.

Метод светолучевой обработки основан на использовании теплового воздействия светового луча высокой энергии, излучаемого оптическим квантом генератором (лазером) на поверхность заготовки.

Размерная обработка с помощью лазеров заключается в образовании отверстий диаметром 0,5…10 мкм в труднообрабатываемых материалах, изготовлении сеток, вырезании из листа сложнопрофильных деталей и т.д.

Источник: electricalschool.info

ЭЛЕКТРОФИЗИЧЕСКИЕ СПОСОБЫ ОБРАБОТКИ МЕТАЛЛОВ

К электрофизическим способам обработки металлов и сплавов относятся: 1) электроискровым; 2) электроимпульсный; 3) электроконтактно-дуговой; 4) ультразвуковой; 5) лучевые.

Электроискровая обработка основана на использовании кратковременных искровых зарядов. Сущность электроискрового метода состоит в том, что металл заготовки под действием электрических искровых разрядов разрушается, т.е. происходит электрическая эрозия, благодаря чему выполняется заданная обработка. Процесс осуществляется на специальном станке в баке, заполненном диэлектрической жидкой средой (маслом, керосином), в которой оторвавшиеся от анода частицы охлаждаются и оседают.

Электроимпульсная обработка основана на использовании разрядов, возникающих между поверхностями инструмента и заготовки. Заготовка является катодом, а инструмент — анодом. Происходит плавление малых частиц металла в зоне электрических разрядов, возникающих между электродами. Разряды возбуждаются с помощью импульсов напряжения, вырабатываемых специальными генераторами, дающими более продолжительный и мощный дуговой разряд, чем при электроискровом методе.

Читать еще:  Маркировка листа нержавеющей стали

Электроконтактно-дуговая обработка заключается в электромеханическом разрушении обрабатываемого материала на воздухе без применения электролита. Металл разрушается под воздействием элек- тродуговых разрядов при быстром перемещении инструмента относительно обрабатываемой заготов- ? ки. В качестве инструмента используют быстровращающийся диск. Диск и заготовка соединены с источником питания — понижающим трансформатором.

Ультразвуковая обработка осуществляется с помощью ультразвуковых колебаний. Вибратор наносит удары по зернам абразива и направляет их на обрабатываемую заготовку. Частицы абразива ударяют по ее поверхности, откалывая и выбивая частички материала. В качестве абразива обычно применяют порошок карбида бора или электрокорунда различной зернистости, а для изготовления суспензии используют воду, керосин.

Светолучевая обработка основана на использовании квантовых генераторов, называемых лазерами. Лазером осуществляются разрезка металла, получение очень малых отверстий и выполнение других видов размерной обработки. Обработка материалов с помощью лазеров не требует вакуумных камер. Благодаря лазерам удается получать такие поверхности, износостойкость которых повышается минимум в 2 раза (инструмент из быстрорежущей стали).

Электронно-лучевая обработка основана на том, что электроны, излучаемые катодом в глубоком вакууме, ускоряются в мощном электрическом поле и фокусируются в узкий пучок, направленный на обрабатываемую заготовку. Электронный луч, попадая на обрабатываемую поверхность, мгновенно нагревает ее до температуры около 6000’С, вследствие чего даже самый тугоплавкий металл будет не только плавиться, но и испаряться, причем на очень малых площадях. Электронно-лучевой обработкой получают отверстия, пазы малых размеров (от 0,005 мм и выше) в труднообрабатываемых материалах.

Источник: studref.com

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

Электрофизические методы обработки металлов

Расширенное внедрение труднообрабатываемых материалов для производства деталей машин, усложнение конструкций этих деталей в купе с вырастающими требованиями к понижению себестоимости и повышению производительности послужило предпосылкой разработки и освоения способов электрофизической обработки .

Электрофизические способы обработки металлов основаны на использовании специфичных явлений, возникающих под действием электронного тока, для удаления материала либо конфигурации формы заготовки.

Главным преимуществом электрофизических способов обработки металлов является возможность их использования для конфигурации формы заготовок из материалов, не поддающихся обработке резанием, причём обработка этими способами происходит в критериях деяния малых сил либо при полном их отсутствии.

Принципиальным преимуществом электрофизических способов обработки металлов является независимость производительности большинства из их от твёрдости и хрупкости обрабатываемого материала. Трудоёмкость и продолжительность этих способов обработки материалов завышенной твёрдости (НВ>400) меньше, чем трудоёмкость и продолжительность обработки резанием.

Электрофизические способы обработки металлов обхватывает фактически все операции механической обработки и не уступает большинству из их по достигаемой шероховатости и точности обработки.

Электроэрозионная обработка металлов

Электроэрозионная обработка является разновидностью электрофизической обработки и характеризуется тем, что изменение формы, размеров и свойства поверхности заготовки происходит под действием электронных разрядов.

Электронные разряды появляются при пропускании импульсного электронного тока в зазоре шириной 0,01 – 0,05 мм меж электродом-заготовкой и электродом-инструментом. Под действием электронных разрядов материал заготовки плавится, испаряется и удаляется из межэлектродного зазора в водянистом либо парообразном состоянии. Подобные процессы разрушения электродов (заготовок) именуют электронной эрозией .

В целях интенсификации электронной эрозии зазор меж заготовкой и электродом заполняют диэлектрической жидкостью (керосин, минеральное масло, дистиллированная вода). При достижении на электродах напряжения, равного напряжению пробоя, в среде меж электродом и заготовкой появляется канал проводимости в виде заполненной плазмой цилиндрической области малого сечения с плотностью тока 8000 – 10000 А/мм2. Высочайшая плотность тока, поддерживаемая в течении 10-5 – 10-8с, обеспечивает температуру на поверхности заготовки до 10000 — 12000˚С.

Удаленный с поверхности заготовки металл охлаждается диэлектрической жидкостью и застывает в виде сферических гранул поперечником 0,01 – 0,005 мм. В каждый следующий момент времени импульс тока пробивает межэлектродный зазор в том месте, где просвет меж электродами оказался минимальным. Непрерывное подведение импульсов тока и автоматическое сближение электрода-инструмента с электродом-заготовкой обеспечивают продолжение эрозии до того времени, пока не будет, достигнут данный размер заготовки либо не будет удален весь металл заготовки в межэлектродном зазоре.

Режимы электроэрозионной обработки делятся на электроискровые и электроимпульсные.

Электроискровые режимы характеризуются внедрением искровых разрядов с малой продолжительностью (10-5…10-7с) при прямой полярности подключения электродов (заготовка “+”, инструмент “-”).

Зависимо от мощности искровых разрядов режимы делятся на жесткие и средние (для подготовительной обработки), мягенькие и особо мягенькие (для конечной обработки). Внедрение мягеньких режимов обеспечивает отклонение размеров детали до 0,002 мм при параметре шероховатости обработанной поверхности Rа=0.01 мкм. Электроискровые режимы употребляют при обработке жестких сплавов, труднообрабатываемых металлов и сплавов, тантала, молибдена, вольфрама и т.д.; обрабатывают сквозные и глубочайшие отверстия хоть какого поперечного сечения, отверстия с криволинейными осями; используя проволочные и ленточные электроды, вырезают детали из листовых заготовок; нарезают зубья и резьбы; шлифуют и клеймят детали.

Для проведения обработки на электроискровых режимах употребляют станки (см. рис.), снаряженные RC-генераторами, состоящего из заряженного и разряженного контура. Зарядный контур включает конденсатор С, заряжающийся через сопротивление R от источника тока с напряжением 100 – 200 В, а в разрядный контур параллельно конденсатору С включены электроды 1 (инструмент) и 2 (заготовка).

Как напряжение на электродах добивается пробойного, через межэлектродный зазор происходит искровой разряд энергии, скопленной в конденсаторе С. Производительность эрозионного процесса может быть увеличена уменьшением сопротивления R. Всепостоянство межэлектродного зазора поддерживается специальной следящей системой, управляющей механизмом автоматического движения подачи инструмента, сделанного из меди, латуни либо углеграфитных материалов.

Электроимпульсные режимы характеризуются применением импульсов большой продолжительности (0,5…10 с), соответственных дуговому уровню меж электродами и поболее насыщенному разрушению катода. В связи с этим при электроимпульсных режимах катод соединяется с заготовкой, что обеспечивает более высшую производительность эрозии (в 8-10 раз) и наименьшей, чем при электроискровых режимах, износ инструмента.

Более целесообразной областью внедрения электроимпульсных режимов является подготовительная обработка заготовок сложнопрофильных деталей (штампы, турбины, лопатки и т.д.), сделанных из труднообрабатываемых сплавов и сталей.

Электроимпульсные режимы реализуются установками (см рис), в каких на электроды 1 и 2 подаются униполярные импульсы от электромашинного 3 либо электрического генератора. Появление Э.Д.С. индукции в намагниченном теле передвигающимся под неким углом к направлению оси намагничивания позволяет получать ток большей величины.

Лучевая обработка металлов

Разновидностями лучевой обработки в машиностроении является электронно-лучевая либо светолучевая обработка.

Электронно-лучевая обработка металлов базирована на термическом воздействии потока передвигающихся электронов на обрабатываемый материал, который в месте обработки плавится и испаряется. Настолько насыщенный нагрев вызывается тем, что кинетическая энергия передвигающихся электронов при ударении о поверхность обрабатываемой заготовки практически стопроцентно перебегает в термическую, которая будучи сконцентрирована на площадке малых размером (менее 10 мкм), вызывает её разогревание до 6000˚С.

При размерной обработке, как понятно, происходит локальное воздействие на обрабатываемый материал, что при электроннонно-лучевой обработке обеспечивается импульсным режимом потока электронов с длительностью импульсов 10-4…10-6 с и частотой f = 50 … 5000 Гц.

Высочайшая концентрация энергии при электронно-лучевой обработке в купе с импульсным воздействием обеспечивают условия обработки, при которых поверхности заготовки, находящиеся на расстоянии 1 мкм от кромки электрического луча, разогреваются до 300˚С. Это позволяет использовать электронно-лучевую обработку для резки заготовок, производства сеток из фольги, вырезания пазов и обработки отверстий поперечником 1 – 10 мкм в деталях из труднообрабатываемых материалов.

В качестве оборудования для проведения электронно-лучевой обработки употребляют особые электровакуумные устройства, именуемые электрическими пушками (см рис). Они генерируют, ускоряют и фокусируют электрический луч. Электрическая пушка состоит из вакуумной камеры 4 (с разрежением 133·10-4), в какой установлен питаемый источником высочайшего напряжения 1 вольфрамовый катод 2, обеспечивающий эмиссию свободных электронов, которые разгоняются электронным полем, сделанным меж катодом 2 и анодной диафрагмой 3.

Читать еще:  Линия по производству профлиста

Дальше электрический луч проходит через систему магнитных линз 9, 6, устройство электронной юстировки 5 и фокусируется на поверхности обрабатываемой заготовки 7, установленной на координатном столе 8. Импульсный режим работы электрической пушки обеспечивается системой состоящей из импульсного генератора 10 и трансформатора 11.

Способ светолучевой обработки основан на использовании термического воздействия светового луча высочайшей энергии, излучаемого оптическим квантом генератором (лазером) на поверхность заготовки.

Размерная обработка при помощи лазеров заключается в образовании отверстий поперечником 0,5…10 мкм в труднообрабатываемых материалах, изготовлении сеток, вырезании из листа сложнопрофильных деталей и т.д.

Источник: elektrica.info

Электрофизические методы обработки, краткий конспект лекции

Краткий конспект лекции по теме 8.1 «Электрофизические методы обработки» по дисциплине «Обработка металлов резанием, станки и инструменты»

Просмотр содержимого документа
«Электрофизические методы обработки, краткий конспект лекции»

Тема 8.1 Электрофизические методы обработки

Электрофизические методы обработки относятся к физико-химическим методам размерной обработки (ФХО) материалов, которые обеспечивают съем обрабатываемого материала в ре­зультате физико-химических процессов. По механизму разрушения и съема материала все физико-химические процессы обработки подразделяют на три группы: электрофизические методы обработки (ЭФО), электрохимические методы обработки (ЭХО) и комбинированные. Каждый из методов ФХО обладает уникальными технологическими возможностями, но все они более энергоемки и менее производительны в сравнении с методами механообработки. По этой причине использование методов ФХО оправдано только в следующих случаях:

— для обработки конструкционных материалов, имеющих низкую обра­батываемость лезвийным и абразивными инструментами, в т.ч. высо­колегированных сталей, твердых сплавов, ферритов, керамики, полупровод­ников, ситаллов и др.;

— для обработки деталей сложной геометрической формы из труднооб­рабатываемых материалов (пресс-формы, детали лопаток турбин и т. п.);

— для обработки миниатюрных тонкостенных нежестких деталей, а так­же деталей сложной формы с пазами и отверстиями.

Основным видом ЭФО является электроэрозионная обработка (ЭЭО), которая основана на использовании явления элек­трической эрозии — разрушения материала электродов при электрическом пробое межэлектродного промежутка. На рис.1 приведена схема процесса ЭЭО.

Рис.1 — Условная схема процесса ЭЭО: 1-электроинструмент; 2 — заготовка; 3 — генератор элек­трических импульсов, 4 — электрический разряд; 5 — газовый пузырь; б — продукты эрозии (шлам); 7 — эрозионная лунка; 8 — рабочая жидкость; 9 —изолятор

Размерная ЭЭО состоит в изменении фор­мы, размеров, шероховатости и свойств поверхности заготовки путем съема материала припуска за счёт управляемого процесса электрической эрозии. Изолированный электрод-инструмент 1 и обрабатываемая заготовка 2 погружены в рабочую диэлектрическую жидкость и соединены с генератором электрических им­пульсов 3. Между электродом и деталью электрическим пробоем межэлек­тродного промежутка (МЭП) возбуждается импульсный разряд 4, который мгновенно нагревает микроучастки электродов и контактирующую с ними жидкость. В результате в зоне разряда формируется газовый пузырь 5. В конце каждого импульса происходит схлопывание пузыря. При этом продук­ты эрозии — шлам — в виде гранул 6 удаляются из МЭП рабочей жидкостью 8, а на поверхности электрода-заготовки образуется эрозионная лунка 7. За вре­мя паузы происходит восстановление электрической прочности МЭП до исходного значения. Затем, при подаче следующего импульса напряжения, весь процесс повторяется, но пробой происходит уже там, где напряжен­ность примет максимальное значение, — в зазоре между наиболее близкими микровыступами поверхности заготовки и инструмента. Процесс эрозии заготовки продолжается до полного удаления металла, находящегося на расстоянии электрического пробоя (0,01—0,15 мм),

При многообразии кинематических схем ЭЭО все схемы условно можно распределить на три группы.

1. Получение требуемой формы и точности поверхности заготовки ко­пированием формы профильного инструмента͵ представляющего собой об­ратное отображение формы детали. По этой схеме электрод-инструмент вне­дряется в заготовку при поступательном перемещении по мере электроэро­зии металла заготовки. Эта схема наиболее широко применяется в практике ЭЭО. Операции, выполняемые по первой схеме, называются копировально-прошивочными (рис.2 а, б, в).

2. Заданная форма детали обеспечивается взаимным перемещением за­готовки и непрофилированного инструмента. По этой технологической схе­ме ЭЭО производят с использованием в качестве электрода-инструмента проволоку или металлический вращающийся диск (рис.2. г, д ).

3. Получение требуемой формы обеспечивается взаимным перемещением профилированного инструмента и заготовки. Эти операции получили наимень­шее распространение. Οʜ используются для правки фасонных электроалмазных кругов, изготовления фигурных канавок и шлифования (рис. 2 е).

Применяемый при ЭЭО разряд возбуждается электрическим пробоем. Элек­трический пробой при подаче импульса напряжения 50—250 В происходит ме­жду микровыступом электрода-заготовки и обработанной поверхностью элек­трода-инструмента. В результате при ЭЭО разрушаются именно выступы, вы­равнивая поверхность заготовки по всему межэлектродному зазору.

По форме импульсы подразделяются на знакопеременные; асиммет­ричные; униполярные синусоидальные; униполярные прямоугольные; уни­полярные гребенчатые.

Рис. 2 — Кинематические схемы процессов ЭЭО:

а — копирование; б — прошивание полостей с прямой осью; в — прошивание отверстий с криволинейной осью; г — отрезка вращающимся диском; д — отрез­ка проволокой (лентой); е — шлифование; 1- обрабатываемая деталь; 2 — ин­струмент; 3 — подача рабочей жидкости

Обрабатываемость различных материалов при электроэрозионной обработке оценивается коэффициентом обрабатываемости. Числовое значение коэффициента обрабатываемости равно, как и при обработке реза­нием, отношению экспериментально установленной скорости съема данного материала к скорости съема стали 45 при тех же параметрах ЭЭО. Коэффи­циент обрабатываемости стали 45 принимается за единицу, тогда коэффици­ент обрабатываемости составляет: для жаропрочных и нержавеющих сталей — 1,4; для алюминия — 2,4; для меди — 0,9; для титана — 0,6; для вольфрама — 0,5; для твердых сплавов — 0,3.

Сопутствующим явлением при ЭЭО является разложение рабочей жидкости под действием высоких температур — пиролиз. В жидких углеводородах, имеющих температуру кипения 150—200 °С, в зоне дугового разряда образуются пары. При соприкосновении паров с нагретыми участками электродов происходит разложение паров с осаждением на по­верхности углерода и выделением водорода. Взаимодействуя с поверхностя­ми электродов, углерод и водород могут оказывать как положительное, так и отрицательное влияние. Так, взаимодействие с обрабатываемой поверхно­стью детали ведет к изменению химического состава поверхностного слоя, что в большинстве случаев нежелательно. В то же время взаимодействие с поверхностью инструмента ведет к образованию на его поверхности слоя пирографита͵ компенсирующего его эрозию в процессе обработки. Это явле­ние используется для повышения стойкости инструмента.

Профи­лированный электрод инструмент задает конфигурацию обрабатываемой поверхности детали. Материал электрода-инструмента должен обладать высокой эрози­онной стойкостью, прочностью, малым омическим сопротивлением и высо­кой обрабатываемостью методами резания.

Эрозионный износ электрода при ЭЭО не является локальным, как при механической обработке, а охватывает всю рабочую поверхность и оценива­ется отношением израсходованного объёма электрода к объёму удаленного металла.

В качестве материала для электродов при обработке высокоуглероди­стых инструментальных сталей и жаропрочных сплавов на никелевой базе рекомендуются графит, медь и композиционный материал МНБ-3 (9,7% ме­ди и 3% нитрида бора). Наименьшему износу подвержен медный электрод, так как его электроэрозия компенсируется углеродом, откладывающимся в результате пиролиза углесодержащих рабочих жидкостей.

В качестве непрофилированного инструмента при ЭЭО наибольшее распространение получили медные или латунные диски и тонкая проволока диаметром 0,02—0,3 мм из меди, латуни, вольфрама и молибдена. Для обеспечения точности обработки и снижения износа проволока-электрод в процессе обработки перематывается с одной бобины на другую, испытывая усилие растяжения.

Читать еще:  Материалы для монтажа сип

В качестве рабочих жидкостей используют низкомолекулярные углево­дороды различной вязкости (керосин, индустриальное масло И12А, транс­форматорное масло и их смеси), воду, кремнийорганические жидкости и водные растворы двухатомных спиртов.

Для уменьшения коррозии электродов в воду добавляют 4% кальцинированной соды. Повышение технологических свойств обеспечива­ется введением поверхностно-активных веществ (ПАВ), к примеру компози­ций элементорганических соединений Ва, Са и ароматических веществ.

Процесс следует проводить за несколько проходов. При первом, черно­вом, проходе на жестком режиме снимается до 90% припуска, а последую­щие чистовые проходы на мягких и очень мягких режимах обеспечивают высокую точность, низкую шероховатость и высокое качество поверхности. Черновая и чистовая обработки ведутся сменным инструментом, точность чистового инструмента должна быть на 1—2 класса выше требуемой точнос­ти обработки детали.

Технологические операции ЭЭО. Заготовительные операции используют для получения заготовок из молибдена, вольфрама, нике­левых сплавов, сплавов на базе титана, металлокерамики, нитинола и дру­гих труднообрабатываемых материалов.

Отрезку заготовок из проката и металлокерамики выполняют дисковы­ми ЭИ из меди, латуни. Разрезание точных малогабаритных заготовок вы­полняют на вырезных станках.

Прошивание отверстий на глубину до 20 диаметров выполня­ют стержневым ЭИ, до 40 диаметров — трубчатым ЭИ, при прошивке жела­тельно вращать ЭИ.

Формирование рабочих полостей штампов, пресс-форм и вырубных штампов. Обычно ЭЭО штампов выполняют по­сле операции фрезерования, обеспечивающей съем основной массы металла. Штампы после ЭЭО имеют повышенную износостойкость по сравнению со штампами, изготовленными обработкой резанием.

Прямое и обратное копирование позволяет изготавливать пуансон по изготовленной матрице и наоборот, что значительно упрощает технологию их изготовления и исключает слесарную доводку. Обработка по методу ко­пирования ведется на копировально-прошивочных станках с ЧПУ.

Обработка криволинейных каналов газовых тур­бин аэродинамического профиля осуществляют прошивкой с криволиней­ной осью.

Вырезание используют при изготовлении деталей электронной тех­ники, вырубных штампов, шаблонов, лекал, фасонных резцов и т. д. Обра­ботка ведется на вырезных станках проволокой.

Изготовление сеток, решеток и пазов проводят методом копирования групповым ЭИ, одновременно обрабатывая до 800 отверстий и более диаметром 0,2—2,0 мм, глубиной 2 мм с точностью ±0,002 мм.

Электроэрозионное шлифование применяют при чистовой обработке наружных и внутренних поверхностей труднообрабатываемых материалов, магнитных и твердых сплавов и т. п. Точность и качество поверхности при обработке на чистовых и доводочных режимах соответствуют чистовым режимам, выполняемым шлифованием. При этом зона термического влияния при доводочных режимах не превышает 0.003 мм.

Учитывая зависимость от длительности импуль­са, вырабатываемого источником тока и способа его формирования различают электроискровой, электроимпульсный и электроконтак­тный способы обработки.

К достоинствам электроэрозионной обработки относятся: возмож­ность обрабатывать токопроводящие материалы любой твердости, вязкости, хрупкости; возможность обрабатывать заготовки сложных форм, даже таких, которые невозможно получить другими способами (к примеру, прошивание отверстий с криволинейной осью); отсут­ствие крайне важно сти в высокой прочности и твердости инструмента; отсутствие механических воздействий на заготовку и инструмент; возможность получать поверхности с различными параметрами ка­чества; значительное снижение трудоемкости обработки сложных поверхностей заготовок из труднообрабатываемых материалов. К недостаткам электроэрозионной обработки можно отнести: об­ратную зависимость между производительностью и качеством обра­ботанной поверхности; крайне важно сть вести обработку при погру­жении заготовки в жидкость; относительно низкую производитель­ность при обработке материалов невысокой твердости (сталь, цвет­ные сплавы). Удаление материала при размерной электрохимической обра­ботке происходит под действием электрического тока в среде элек­тролита без непосредственного контакта между инструментом и заготовкой. В корне этого процесса лежит явление анодного рас­творения металлов в движущемся (проточном) электролите.

Для чистовой обработки, осуществляемой обычно в электроиск­ровом режиме, чаще всего используют инструменты из обычной и пористой меди, латуни. Для черновых операций, выполняемых в электроимпульсном режиме, для изготовления электродов-инстру­ментов применяют; графитовые и медно-графитовые композиции, алюминий, цинковые сплавы. Для изготовления мелких отверстий часто используют инструменты из вольфрама или молибдена, ко­торые обладают высокой абразивной стойкостью, но дороги. Для электроконтактной обработки применяют инструменты из меди, латуни, чугуна или стали. Серый чугун имеет удовлетворительную эрозионную стойкость при обработке на всех режимах.

Для каждого вида об­работки применяют оптималь­ные диэлектрические среды. Так, при электроэрозионной об­работке с малой энергией им­пульса высокую производи­тельность обеспечивает дистил­лированная и технически чистая вода, при грубых режимах (электроимпульсная обработка) применяют масла.

В процессе обработки рабочая среда загрязняется, что снижает производительность. Допусти­мая загрязненность для черно­вых режимов — 4. 5% по мас­се, а для чистовых — 2. 3%. При электроконтактном режиме импульсы тока формируются непосредственно в промежутке между инструментом и заготовкой вследствие их относительного движения и наличия микровыступов на рабочей поверхности инструмента. Напряжение применяемого источника постоянного или переменного тока и = 1. 20 В.

Электрофизические методы обработки — понятие и виды. Классификация и особенности категории «Электрофизические методы обработки» 2014, 2015.

Источник: multiurok.ru

Электрофизические методы обработки металлов

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое «Электрофизические и электрохимические методы обработки» в других словарях:

Электродные процессы — электрохимические превращения на границе электрод/электролит, при которых через эту границу происходит перенос заряда, проходит электрический ток. В зависимости от направления перехода электронов (с электрода на вещество или наоборот)… … Большая советская энциклопедия

Электрохимическая обработка — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Электрохимическая обработка(ЭХО) (D. Elektrochemisches Abtragen,E. Electrochemical machining, F. Usinage électrochimique, 電化學加工, 電解加工, 전해가공) … … Википедия

Технология металлов — совокупность приёмов и способов получения и обработки металлических материалов, а также научная дисциплина, охватывающая комплекс указанных вопросов. Понятие «Т. м.» охватывает всё содержание понятия «металлургия» в его широком значении,… … Большая советская энциклопедия

Станкостроение — ведущая отрасль машиностроения, создающая для всех отраслей народного хозяйства металлообрабатывающие и деревообрабатывающие станки, автоматические и полуавтоматические линии, комплексно автоматического производства для изготовления машин … Большая советская энциклопедия

Электрохимия — I Электрохимия раздел физической химии (См. Физическая химия), предметом изучения которого являются объёмные и поверхностные свойства твёрдых и жидких тел, содержащих подвижные Ионы, и механизмы процессов с участием ионов на границах… … Большая советская энциклопедия

Электрохимия — I Электрохимия раздел физической химии (См. Физическая химия), предметом изучения которого являются объёмные и поверхностные свойства твёрдых и жидких тел, содержащих подвижные Ионы, и механизмы процессов с участием ионов на границах… … Большая советская энциклопедия

Импульсная техника — I Импульсная техника область техники, исследующая, разрабатывающая и применяющая методы и технические средства генерирования (формирования), преобразования и измерения электрических импульсов (см. Импульс электрический). В И. т. также… … Большая советская энциклопедия

Упрочнение — в технологии металлов, повышение сопротивляемости материала заготовки или изделия разрушению или остаточной деформации. У. характеризуется степенью У. – показателем относительного повышения значения заданного параметра… … Большая советская энциклопедия

Электроэрозионная обработка — ЭЭО профилированной полости. Включение на обратную полярность. 1 обрабатываемая деталь, 2 разряды в зазоре, 3 электрод инструмент, 4 генератор униполярных импульсов … Википедия

Шлифование — шлифовка (от польск. szlifować, нем. schleifen точить, полировать, шлифовать), 1) обработка поверхностей заготовок абразивным инструментом (См. Абразивный инструмент). Производится на шлифовальных станках, на металлорежущих… … Большая советская энциклопедия

Источник: dic.academic.ru

Ссылка на основную публикацию
Adblock
detector