Диммер 220 вольт схема

Диммер 220 вольт схема

Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbspСсылка на страницу.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.
Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.

Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.

Рис.2

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3. 5% от максимальной.
Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.

Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов — самое то.

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

Читать еще:  Коронка по бетону 132 мм на перфоратор

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),


Рис.5

так и управлять более мощными симисторами (Рис.6).


Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.

Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

Источник: vpayaem.ru

Простая схема диммера на 220В для сборки своими руками

Диммер – электронное устройство, позволяющее управлять напряжением в нагрузке, а значит, и мощностью. Реализовать регулировку можно несколькими способами. Но наиболее распространён фазовый способ, суть которого состоит в управлении во времени моментом отпирания силового ключа (транзистора, тиристора). В сетях переменного тока лучше всего зарекомендовали себя диммеры на основе симметричного тиристора (симистора) в виде простой и недорогой конструкции. Как сделать диммер своими руками из доступных деталей, описано в этой статье.

Схема и принцип её работы

Практически все современные симисторные диммеры бытового назначения имеют общую элементную базу. Все остальные детали схемы выполняют дополнительные функции: осуществляют индикацию, способствуют стабильной работе на пониженном напряжении, делают регулировку более плавной и так далее.

Принцип действия симисторного регулятора рассмотрим на примере наиболее распространённой схемы диммера на 220 вольт, представленной на рисунке. Основной элемент схемы – симистор VS1. Он пропускает ток в обоих направлениях при появлении на управляющем электроде отпирающего импульса. Силовые электроды VS1 подключаются последовательно с нагрузкой. Поэтому ток нагрузки равен току симистора. В цепи управления силовым ключом расположен динистор VS2, открытое и закрытое состояние которого зависит от величины напряжения на его электродах. Элементы R1, R2 и С1 участвуют в цепи заряда конденсатора С1. Диод VD1 и светодиод LED образуют цепь индикатора включенного состояния. При включении диммера симистор закрыт и ток нагрузки не протекает. В момент появления очередной положительной или отрицательной полуволны сетевого напряжения через резисторы R1 и R2 начинает протекать ток. Конденсатор С1 заряжается со скоростью, которая определяется сопротивлением указанных резисторов. Ввиду того что напряжение на конденсаторе не может измениться мгновенно, образуется некоторый фазовый сдвиг между напряжением в сети и на С1. При достижении на конденсаторе напряжения равного напряжению срабатывания динистора (32В), последний открывается, что приводит к появлению импульса на управляющем электроде VS1 и его отпиранию. Через нагрузку протекает ток. Симистор находится в открытом состоянии до окончания полуволны (смены полярности) сетевого напряжения. Затем процесс повторяется.

За счёт изменения сопротивления R2 происходит увеличение (уменьшение) фазового сдвига. Чем больше сопротивление, тем дольше будет заряжаться конденсатор и тем меньше будет время открытого состояния симистора. Другими словами, вращение ручки регулятора приводит к изменению мощности в нагрузке.

Печатная плата и детали сборки

Для того чтобы собрать представленный диммер своими руками, потребуются следующие радиодетали:

  • С1 – неполярный металлоплёночный конденсатор ёмкостью 0,022-0,1 мкФ-400В;
  • R1 – резистор 4,7-27 кОм-0,25 Вт;
  • R2 – переменный резистор со встроенным выключателем 0,5-1 МОм-0,5 Вт;
  • VD1 – выпрямительный диод 1N4148, 1N4002 или аналогичные;
  • VS1 – симистор BT136-600D или BT136-600E;
  • VS2 – динистор DB3;
  • LED – светодиод индикаторный.

Диммер в приведенной комплектации рассчитан на подключение электроприбора мощностью не более 500 Вт. Если мощность нагрузки превышает 150 Вт, то симистор крепят на радиатор. Печатная плата 25 на 30 мм доступна для скачивания здесь.

Область применения

В повседневной жизни диммер чаще всего применяют для регулировки яркости ламп освещения. Подключая его в цепь питания галогенных ламп, получают готовое устройство плавного розжига света, которое в разы продлевает срок службы осветительного прибора. Часто радиолюбители собирают диммер своими руками для регулировки нагрева паяльника. Регулятор мощности с увеличенной нагрузочной способностью можно использовать для изменения скорости вращения электродрели.

Запрещено подключать диммер к электроприборам, которые содержат электронный блок обработки сигнала (например, блок питания). Исключение составляют светодиодные лампы с возможностью диммирования.

Источник: ledjournal.info

Схемы диммеров своими руками

Изменение величины сетевого напряжения дает возможность управлять бытовыми электроприборами. Например, увеличивать или уменьшать яркость свечения ламп, что в ряде случаев используется для экономии электроэнергии, но чаще для создания особых световых эффектов. Такие устройства называются диммерами (затемнителями). Сегодня мы вам расскажем о том, как сделать диммер своими руками.

Способы управления величиной напряжения

Регуляторы яркости света работают на одном из двух принципов:

  1. Рассеивания.
  2. Отсекания части подаваемой электрической энергии.

Рассеивание

Заключается в использовании резистивных свойств проводника. Это довольно простые элементы, их называют реостатами. Они состоят из одного проводника, обычно скрученного в спираль, и подвижного контакта, напряжение на котором зависит от того, на каком витке спирали он расположен. Та часть энергии, которая не используется, рассеивается в виде тепла, что и является главным недостатком устройства – при напряжениях свыше 100 вольт нагрев столь значительный, что может вызвать пожар.

Этот способ универсальный, может применяться как к постоянному, так и переменному току. Он редко используется напрямую, но на его основе строятся все схемы регулирования.

Применяется только к переменному току, у которого можно «отрезать» часть синусоиды, получив последовательность разнополярных импульсов, частота следования и амплитуда которых зависит от момента (фазы) и длительности периода отсекания. Способ связан с меньшим рассеиванием энергии, но приводит к значительному искажению формы синусоиды, что плохо действует на потребителей с преимущественно индуктивной или емкостной нагрузкой. Например, использование диммеров для управления частотой вращения электромоторов вызывает их перегрев. Эпюры отсекаемых частей синусоиды показаны на рисунке ниже.

Способ чаще всего используется для изменения яркости свечения ламп накаливания и им подобных светотехнических устройств – галогенных и металлогалогенных ламп. Его категорически нельзя применять для управления компактными люминесцентными лампами и ограниченно – для светодиодных. В основном для тех, схемы питания которых (драйверы) поддерживают диммирование, о чем обычно пишется на их упаковке.

Реализуются с помощью так называемых ключевых схем, построенных на тиристорах, динисторах и симисторах.

  • Тиристор – диод, пропускающий ток только в одном направлении в тот момент, когда на его управляющем электроде появляется отпирающее напряжение.
  • Симистор – фактически двойной тиристор, пропускающий ток в обоих направлениях. Применяется для упрощения монтажной схемы.
  • Динистор – диод, пропускающий электрический ток при достижении порогового значения напряжения. Используется для построения времязадающих цепочек.
Читать еще:  Диаметр сопла газовой горелки

Тиристорная схема

Тиристорная схема диммера на 220 вольт приведена на рисунке ниже.

Тиристоры обозначены литерами V1 и V2. Обратите внимание, что они включены встречно, поскольку каждый пропускает часть полуволны синусоиды одного знака. Напряжения отпирания динисторов V3 и V4 регулируется рассеивающим энергию реостатом R5. Схема имеет две времязадающие цепочки: V3–C1 и V3–C2. В зависимости от уровня отпирающего напряжения на переменном резисторе R5 изменяется время зарядки конденсаторов, при разряде которых открываются ключи V1 и V2. Этим и определяется фаза пропускания синусоиды. Тиристоры можно найти в силовых схемах старых бытовых приборов – телевизоров или пылесосов.

Симисторная схема

Ключевая схема на симисторе приведении на рисунке ниже.

Ее преимущество в компактности. У нее один управляющий элемент – VS1 и одна времязадающая цепочка, состоящая из VS2 и С1. Рассеивающий регулятор напряжения – переменный резистор R1. Остальные элементы обеспечивают стабильность работы схемы.

Диммеры на постоянном токе

Только светодиодные лампы с цоколем типа Е (винтовой, аналогичный лампе накаливания) имеют собственный блок питания, преобразующий переменный ток в постоянный. Остальные светодиодные источники света, среди которых и светодиодные ленты, должны снабжаться отдельным блоком питания. Диммер для светодиодной ленты также должен работать от источника постоянного тока.

Оптимальным решением будет объединение блока питания ленты и диммера. Для этого используется схема с использованием микросхемы КР 142ЕН 12А, представленная на рисунке ниже.

Сама микросхема является регулируемым стабилизатором компенсационного типа. Её вывод 1 является точкой, на которую подается опорное напряжение, определяющее его величину на выходе диммера. Регулировка производится с помощью резистора R2, который является классическим рассеивателем энергии.

Зная принцип построения схем управляющих яркостью свечения ламп, вы можете не только сделать такое устройство самостоятельно, но и произвести ремонт диммера, купленного в магазине.

Источник: electriktop.ru

Диммер своими руками

Приветствую тебя мой дорогой читатель. Сегодня мы будем собирать диммер своими руками. По-другому он называется регулятор мощности переменного тока. Куда мы его можем «запихать» или где его можем применить? Везде и хоть куда!

Дело в том, что диммер может найти широкое применение, как в хозяйстве, так и в вашей мастерской. Регулировать мощность с помощью него можно на электронагревателе водяного бака или самогонного аппарата, а также в самодельном инкубаторе или вулканизаторе для заклеивания проколотых автомобильных камер.

Отдельное слово хочу сказать про применение данной конструкции в мастерской. Диммером можно плавно регулировать температуру нагрева паяльника, скорость вращения дрели или болгарки, а также просто для регулирования яркости ламп накаливания.

Теперь можно сделать вывод, что диммер является бесценным устройством в хозяйственной деятельности и мастерской.

Схема диммера (регулятора мощности)

Основным регулирующим элементом является симистор он же триак BTA06-600. Его можно заменить на практически любой аналог из серии BTA, например BTA12-60, BTA24-600 или другой. Пересчет номиналов элементов при этом производить не нужно.

Первые цифры маркировки означают максимальный ток в открытом состоянии. Максимальное обратное напряжение определяется второй группой цифр. Таким образом, BTA06-600 это триак с током 6А и напряжением 600В, которого хватит для регулировки нагрузки мощностью 800Вт. При выборе симистора рекомендую брать запас по току. Обычно я беру двукратный запас. На цене это отражается незначительно, а надежность конструкции повышается заметно, да и душа спокойна.

Резистор R1 должен быть мощностью 0.25Вт, даже при использовании диммера на 3кВт резистор будет холодным. Также нет особых требований для переменного резистора, берем любой. Конденсатор C1 пленочный, напряжением 400В. Предохранитель выбирается в зависимости от тока нагрузки.

Светодиод можно не устанавливать, тогда вместо диода VD1 необходимо установить перемычку.

Предохранитель F1 можно установить на отдельной колодке или на проводе, выведя колпачок его корпуса на заднюю панель диммера.

Работа схемы

При подключении нагрузки симистор VD4 закрыт. В это время начинает протекать ток через предохранитель F1, нагрузку и резисторы R1, R2, заряжая конденсатор C1. Как только на конденсаторе C1 напряжение поднимется выше 32В, откроется динистор VD3 и через него потечет ток, открывая VD4. Последний начинает пропускать через себя ток нагрузки и закрывается он только в тот момент, когда синусоида проходит нулевой потенциал. Далее все повторяется по циклу.

Переменным резистором R2 регулируется скорость зарядки конденсатора C1. Чем дольше он будет заряжаться до порога открытия VD3, тем дольше будет закрыт VD4, а когда он закрыт, происходит отрезание синусоиды на нагрузке.

Несколько слов об охлаждении

К фланцу регулирующего элемента необходимо прикрепить радиатор охлаждения. Не забываем между ними положить слой теплопроводной пасты. Площадь поверхности радиатора нужно подобрать опытным путем.

Из своего опыта скажу, что для регулировки паяльника или лампы накаливания мощностью 80Вт можно обойтись без радиатора. При работе на нагрузку 1кВт (BTA12-600) с площадью радиатора 200см 2 температура последнего достигает 90 0 C при длительности работы 5ч. При пятичасовой работе (BTA24-600) на нагрузку 3кВт я достиг комнатной температуры радиатора, для этого я установил небольшой кулер от процессора ПК, обеспечив его питание от миниатюрного выпрямителя.

Для исключения нагрева силовых дорог печатной платы, при работе на большую мощность (более 1кВт), следует дорожки покрыть толстым слоем олова или пропаять медным проводом.

Сетевые провода и провода нагрузки рекомендуется впаять в плату, чтобы исключить плохой контакт и нагрев клемм.

Меры техники безопасности

Диммер работает при высоком напряжении (220В), поэтому при его работе лучше не трогать инструментом или руками конструкцию. Если кому интересно, то скажу вам, что от фланца симистора током не «бьет», и соответственно от радиатора тоже (проверено).

Проверять работоспособность диммера лучше всего на лампе накаливания мощностью 60-80Вт. Не стоит пробовать подключать светодиодные, энергосберегающие и другие лампы, включающие в себя пусковые устройства и импульсные преобразователи.

Источник: audio-cxem.ru

Делаем диммер для домашнего освещения своими руками

Согласитесь, иногда возникает потребность в регулировании яркости лампы. Ну, действительно, не всегда требуется, чтобы она светила на полную мощность. Если в вечернее время вы собрались семьёй в зальной комнате за беседой, достаточно приглушённого освещения. Зачем же включать люстру на полную мощность, гнать лишние киловатт-часы и переплачивать за расход электроэнергии. В таком случае выручает регулятор освещения, по-другому это устройство называется диммером. С его помощью можно изменять электрическую мощность лампы и тем самым регулировать яркость света. Многие мужчины, знатоки электротехники и любители радиоэлектроники, собирают диммер своими руками.

Но тут возникает вполне логичный вопрос, зачем нужен самодельный диммер, если можно пойти в магазин электротехнических товаров и купить заводское устройство? Во-первых, цена на заводской регулятор прямо скажем не маленькая. Но это ещё полбеды. Возникают иногда потребности установки диммера, например, для настольной лампы. И если вы отправитесь в магазин, то не факт, что найдёте устройство подходящих вам размеров, чтобы можно было впихнуть его в такой осветительный прибор. Так что проблема, собрать диммер в домашних условиях своими руками, всё-таки актуальна и поэтому посвятим ей данную статью.

Основная цель и суть диммера

Пару слов о том, что такое диммер и зачем он вообще нужен?

Читать еще:  Электрические лодочные моторы для надувных лодок

Это устройство электронное, предназначается для того, чтобы с его помощью изменять электрическую мощность. Чаще всего, таким образом меняют яркость осветительных приборов. Работает с лампами накаливания и светодиодами.

Электрическая сеть поставляет ток, который имеет синусоидальную форму. Чтобы в лампочке изменилась яркость, требуется подача на неё обрезанной синусоиды. Отсечь передний или задний фронт волны можно за счёт тиристоров, установленных в схеме диммеров. Это способствует уменьшению напряжения, подаваемого на светильник, что соответственно приводит к снижению мощности и яркости света.

Элементы схемы

Начнём с того, что определимся, какие элементы нам потребуются для схемы регулятора яркости освещения.

На самом деле схемы довольно простые и не потребует каких-то дефицитных деталей, с ними сможет разобраться даже не слишком опытный радиолюбитель.

  1. Симистор. Это триодный симметричный тиристор, по-другому его ещё называют триак (название пошло из английского языка). Представляет собой полупроводниковый прибор, который является тиристорной разновидностью. Используется для коммутирующих операций в электрических цепях на 220 В. Симистор имеет два основных силовых вывода, к которым последовательно подключается нагрузка. Когда симистор закрыт, в нём отсутствует проводимость и нагрузка получается выключенной. Как только на него подаётся отпирающий сигнал, между его электродами появляется проводимость и нагрузка включается. Его основной характеристикой является ток удержания. Пока через его электроды протекает ток, превышающий эту величину, симистор остаётся открытым.
  2. Динистор. Он относится к полупроводниковым приборам, является разновидностью тиристоров, и обладает двунаправленной проводимостью. Если рассмотреть принцип его работы подробнее, то динистор представляет собою два диода, которые включены навстречу друг другу. Динистор по-другому ещё называют диак.
  3. Диод. Это электронный элемент, который в зависимости от того, какое направление принимает электрический ток, обладает разной проводимостью. Он имеет два электрода – катод и анод. Когда к диоду прикладывают прямое напряжение, он открыт, в случае с обратным напряжением диод закрыт.
  4. Неполярный конденсатор. Их основное отличие от других конденсаторов заключается в том, что они могут подключаться в электрическую цепь без соблюдения полярности. В процессе эксплуатации допускается смена полярности.
  5. Постоянный и переменный резисторы. В электрических цепях они считаются пассивным элементом. Постоянный резистор обладает каким-то определённым сопротивлением, у переменного эта величина может изменяться. Их основное предназначение – преобразовать силу тока в напряжение или наоборот напряжение в силу тока, поглотить электрическую энергию, ограничить ток. Переменный резистор иначе ещё именуют потенциометр, у него имеется подвижный отводной контакт, так называемый движок.
  6. Светодиод для индикатора. Это такой полупроводниковый прибор, который имеет электронно-дырочный переход. Когда через него пропускается в прямом направлении электрический ток, он создаёт оптическое излучение.

Схема диммера на симисторе использует фазовый способ регулировки. При этом основным регулирующим элементом является симистор, от его параметров зависит мощность нагрузки, которую можно подключить к данной схеме. К примеру, если использовать симистор ВТ 12-600, то можно регулировать мощность нагрузки до 1 кВт. Если вы захотите сделать свой диммер на более мощную нагрузку, то соответственно выбирайте и симистор с большими параметрами.

Принцип работы

Перед тем, как сделать диммер своими руками, давайте разберёмся, в чём заключается суть его работы.

  • При подключении схемы в электрическую цепь, на неё поступает переменное напряжение 220 В из сети. Когда в синусоиде напряжения наступает полупериод положительный, через резисторы и один из диодов начинает протекать ток, за счёт чего происходит зарядка конденсатора.
  • Как только напряжение достигает параметра, необходимого для пробоя динистора, начинает протекать ток через динистор и через управляющий электрод симистора.
  • Этот ток способствует тому, что симистор открывается. Лампы, которые последовательно с ним подсоединены, оказываются подключенными к цепи и зажигаются.
  • Как только синусоида напряжения пройдёт через ноль, симистор закроется.
  • Когда синусоида напряжения достигает полупериода отрицательного, весь процесс повторяется аналогичным образом.
  • Момент открытия симистора имеет прямо пропорциональную зависимость от величины активного сопротивления в схеме. При изменении этого сопротивления можно менять в каждом полупериоде время открытия симистора. Тем самым будет плавно изменяться потребляемая мощность лампочки и яркость её свечения.

Подробнее принцип работы и последующая сборка устройства описаны в этом видео:

Сборка схемы

Теперь мы подошли к тому, чтобы собрать наш диммер. Имейте в виду, что схема может быть навесной, то есть с применением соединительных проводов. Но будет лучше использовать печатную плату. Для этой цели вы можете взять фольгированный текстолит (достаточно будет размера 35х25 мм). Диммер, собранный на симисторе с применением печатной платы, позволяет свести к минимуму размеры блока, он будет иметь малые габариты, а это даёт возможность устанавливать его на место обычного выключателя.

Перед началом работ запаситесь канифолью, припоем, паяльником, кусачками и соединительными проводами.

Далее схема регулятора собирается по следующему алгоритму:

  1. На плату нанесите схемы соединения. Для выводов подсоединяемых элементов просверлите отверстия. При помощи нитрокраски прорисуйте на схеме дорожки, а также определите место монтажных площадок для пайки.
  2. Далее плату необходимо протравить. Приготовьте раствор хлорного железа. Посуду возьмите такую, чтобы плата не ложилась плотно на дно, а своими уголками как бы упиралась о её стенки. Во время травления переворачивайте плату периодически и помешивайте раствор. В случае, когда это надо сделать быстро, согрейте раствор до температуры 50-60 градусов.
  3. Следующий этап – лужение платы и промывка её спиртом (ацетон использовать нежелательно).
  4. В проделанные отверстия установите элементы, лишние концы отрежьте и при помощи паяльника пропаяйте все контакты.
  5. Припаяйте при помощи соединительных проводов потенциометр.
  6. А теперь собранная схема диммера тестируется для ламп накаливания.
  7. Подключите лампочку, включите схему в электрическую сеть и вращайте ручку потенциометра. Если всё собрано верно, то яркость свечения лампы должна изменяться.

Подключение

Как правило, диммеры устанавливают на место выключателей. То есть он монтируется на разрыв фазы последовательно с нагрузкой. Это, кстати, очень важно, как и при подключении выключателя. Ни в коем случае не перепутайте фазу и ноль, если вы установите диммер на разрыв нуля, выйдет из строя электронная схема. Чтобы не допустить ошибки, перед установкой при помощи индикаторной отвёртки точно убедитесь – где у вас фаза, а где ноль.

Далее алгоритм такой:

  1. Обесточьте рабочее место путём отключения вводного автомата на комнату или квартиру.
  2. Демонтируйте из монтажной коробки выключатель.
  3. Подайте напряжение и на отсоединённых проводах точно определите фазу и ноль. Обнаруженную фазу каким-то образом наметьте (маркером или изолентой).
  4. Снова отключите вводное питание. Входные клеммы диммера подсоедините к фазному проводу, выходные клеммы соединяются с нагрузкой. У заводских регуляторов клеммы маркируются, в этом случае надо производить подсоединение согласно маркировке. Но для диммеров нет принципиальной разницы, так что подключение фазы может быть произвольным.
  5. Диммер для светодиодных ламп 220 В, сделанный своими руками, устанавливается точно также. Единственное принципиальное отличие, он должен устанавливаться перед контролёром этих ламп. То есть с диммера выход идёт на вход контролёра.

Диммер, который вы собрали своими руками, можно использовать не только, как регулятор мощности на симисторе для освещения. С его помощью вы можете изменять скорость вращения вытяжного вентилятора или регулировать температуру жала паяльника. Так что если вы дружите с радиоэлектроникой, вам вполне по силам сделать симисторный регулятор. Быть может, он не сильно облегчит вашу жизнь, но сам факт того, что вы сотворили это сами, уже хорошо.

Источник: yaelectrik.ru

Ссылка на основную публикацию
Adblock
detector